
1
3

9
7

Research Article
Received: 18 March 2013 Revised: 26 August 2013 Accepted article published: 1 October 2013 Published online in Wiley Online Library: 11 November 2013

(wileyonlinelibrary.com) DOI 10.1002/jsfa.6427

Prediction of essential oil content of oregano
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Abstract

BACKGROUND: In the framework of a breeding programme, the analysis of hundreds of oregano samples to determine their
essential oil content (EOC) is time-consuming and expensive in terms of labour. Therefore developing a new method that is
rapid, accurate and less expensive to use would be an asset to breeders. The aim of the present study was to develop a method
based on near-inrared (NIR) spectroscopy to determine the EOC of oregano dried powder. Two spectroscopic approaches were
compared, the first using a hand-held NIR device and the second a Fourier transform (FT) NIR spectrometer.

RESULTS: Hand-held NIR (1000–1800 nm) measurements and partial least squares regression allowed the determination of
EOC with R2 and SEP values of 0.58 and 0.81 mL per 100 g dry matter (DM) respectively. Measurements with FT-NIR (1000–2500
nm) allowed the determination of EOC with R2 and SEP values of 0.91 and 0.68 mL per 100 g DM respectively. RPD, RER and
RPIQ values for the model implemented with FT-NIR data were satisfactory for screening application, while those obtained with
hand-held NIR data were below the level required to consider the model as enough accurate for screening application.

CONCLUSION: The FT-NIR approach allowed the development of an accurate model for EOC prediction. Although the hand-held
NIR approach is promising, it needs additional development before it can be used in practice.
c© 2013 Society of Chemical Industry

Keywords: hand-held NIR; FT-NIR; PLS; essential oil content (EOC); oregano

INTRODUCTION
Owing to its high demand, especially in the food industry, as dry
grass or in the form of essential oil,1 oregano has been the subject
of numerous studies, including breeding programmes.2,3 Although
the chemical composition differs depending on the species and

variety,4–6 the trade name ‘oregano’ includes species that are
rich in monoterpenoid phenols, mainly carvacrol and occasionally
thymol.5,6 It has been shown that the essential oil, which is rich in
these molecules, has antimicrobial7 and antioxidant4,7 properties
that can be used not only for the benefit of human health but also
in the farming and food industries.7

Currently, qualitative and quantitative analyses of the
components of oregano or its essential oil by conventional
methods (i.e. hydrodistillation, gas chromatography, high-
performance liquid chromatography) are time-consuming and
expensive. In terms of speed of analysis, such methods are difficult
to use when a series of hundreds of samples has to be analyzed, as in
the case of a breeding programme.8 In the last 20 years a predictive,
rapid and low-cost method based on near-infrared spectroscopy
(NIRS) has been developed for determining the quality of various
agricultural and food products. Several studies have already been
carried out successfully in the field of aromatic and medicinal
plants.9,10 Studies have been reported on cumin,11,12 fennel,11,13

coriander,11 green tea leaves,14 sage,15 thyme9 and rosemary.16

The aim of the present study was to develop a method to
quantify the contents of oregano essential oil by NIRS. The method

developed must be fully usable in the context of a breeding
programme. Two technologies have been tested, a hand-held
NIR device and a Fourier transform (FT) NIR spectrometer, both
adapted to the needs of a breeding programme.

MATERIALS AND METHODS
Plant material
The oregano samples used in this study comprised species and
varieties grown in the experimental fields of Agroscope Research
Station (Conthey, Switzerland). Samples were gathered from two
harvest years (2009 and 2010) and stored at room temperature in
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the dark. Several species were studied in order to have the widest
range of essential oil content, namely O. vulgare, O. minutiflorum,
O. syriacum (ssp. syriacum and ssp. bevanii), O. vulgare ssp. hirtum
(variety of seed supplier Bolier), O. vulgare (var. Carva: O. vulgare
ssp. viridulum × O. vulgare ssp. hirtum), O. vulgare ssp. hirtum (var.
Origalia). A total of 101 samples were used in the present study.

Determination of essential oil content
Essential oils were obtained by hydrodistillation of samples of
dried leaves according to the standard method.17 All samples
were distilled 1 week before analysis by NIRS, providing reference
data necessary for the calibration step of the model. The dry
matter (DM) content of samples was measured by drying at 105 ◦C
for 12 h. The essential oil content (EOC) was expressed in mL
per 100 g DM.

Hand-held NIR approach
Fractions of oregano dry samples were pulverized in a laboratory
mill (10 000 rpm, 0.5 mm grid; Variable-speed Rotor Mill
PULVERISETTE 14, Fritsch GmbH, Idar-Oberstein, Germany). The
powder was carefully placed in closed vials and stored at room
temperature in the dark. A first set of 74 samples (calibration
set) and a second set of 27 samples (test set) were used for the
calibration and validation steps respectively.

Spectra were acquired in reflectance mode using a MEMS-
based PHAZIR (NIR PHAZIR 1018, Anatec, Eke, Belgium). Samples
of oregano dry powder were placed in adapted vials closed with
a plastic cap (vials for PHAZIR PCX-ACC-4 solids adapter, 15 mm
i.d.). Spectral acquisition was carried out in direct contact analysis
mode by placing the vials in the specific PHAZIR adapter situated
at the end of the NIR pistol. Absorbance spectra (average of 30
scans) were recorded at a resolution of 8 nm from 1000 to 1800
nm. Before analyzing the set of samples, a white reference scan
was carried out using a piece of Spectralon.

Within this framework, NIR measurements were performed
three times by rotating the vial a few degrees between each
measurement. A total of 222 (3 measurements × 74 samples)
spectra were collected to calibrate the model for the prediction
of EOC, and 81 (3 measurements × 27 samples) spectra were
collected to constitute the validation set. In order to compensate
the effects of uncontrolled baseline and intensity variations,
spectra were pretreated using a second-derivative method.10

FT-NIR approach
Spectra were acquired in reflectance mode using an FT-NIR
spectrometer (NIRFlex Solids, Büchi, Flawil, Switzerland). Powder
of dried leaves was presented to the instrument in a rotating glass
Petri dish, and NIR spectra were collected from 1000 to 2500 nm
at a resolution of 12 cm−1.

NIR measurements were performed six times by rotating
the Petri dish between each measurement. A total of 444 (6
measurements × 74 samples) spectra were collected to calibrate
the model for the prediction of EOC, and 27 (1 measurement × 27
samples) spectra were collected to constitute the validation set.
Spectra were pretreated by the standard normal variate (SNV)
method18 and detrending.

Data analysis
Partial least squares regression (PLS) was carried out to produce
linear models of prediction between spectral data and reference

values (EOC). The models were built in three steps, i.e. (1)
calibration, (2) cross-validation and (3) validation. Cross-validation
was performed using a leave-k-out procedure, were k is the
number of spectral acquisitions per sample.19 The optimal number
of latent variables (LV) introduced in the models corresponded to
a compromise that allowed us to obtain a model presenting on
the one hand the relatively lowest RMSECV value and on the other
hand the relatively highest R2 value.20

The accuracy of the predictions is discussed according to the
coefficient of determination of calibration (R2) and the standard
errors of calibration (SEC), cross-validation (SECV) and validation
(SEP), while other calculated parameters allowed us to attempt an
evaluation of model quality according to the range of reference
data and the eventual bias measured when the external validation
was performed:

R2 (C/CV/P) = 1 − (PRESS/TSS)

SE (C/CV/P) =
[

n∑
i=1

(yi − ŷi)
2/n

]1/2

bias =
n∑

i=1

(̂yi/n) −
n∑

i =1

(yi/n) = ŷ − y

SE (C/CV/P)c =
[

n∑
i=1

(̂yi − bias − yi)
2/n

]1/2

RSE (C/CV/P)c (%) = (100/y)

[
n∑

i =1

(̂yi − bias − yi)
2/n

]1/2

where ŷi is the predicted value, yi the mean value and yi the actual
value of EOC in the PLS model, n is the number of samples in
the PLS model, PRESS is the prediction residual error of the sum
of squares, TSS is the total sum of squares and the subscript ‘c’
indicates that the parameters (SE(C/CV/P) and RSE(C/CV/P)) have
been corrected for bias.

The accuracy and robustness of the PLS models are discussed
according to the following parameters, all corrected for bias value:

coefficient of variation, CVc (%) = SEPc/mean

ratio of performance to deviation, RPDc = SD/SEPc

where SD is the standard deviation;

ratio of SEPc to reference data range, RERc = (ymax − ymin)/SEPc

where ymax and ymin are the maximum and minimum reference
values of EOC respectively;

ratio of SEPcto interquartile,21 RPIQc = (Q3 − Q1)/SEPc

where Q3 and Q1 are the values of the third and first quartiles of
reference data respectively.

RESULTS
Reference data values
The EOC reference values obtained from hydrodistillation of the
essential oils ranged from 0.23 to 10.1 mL per 100 g DM. The his-
togram of EOC values with superimposed normal density curve in
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Figure 1. (A) Histogram of EOC values with superimposed normal density curve. (B) Quantile–quantile plot.

Table 1. PLS data of EOC determination (hand-held NIR and FT-NIR)

PHAZIR 1018 FT-NIR

PLS data Unit Calibration Cross-validation Validation Calibration Cross-validation Validation

N — 74 74 27 74 74 27

EOC range mL per 100 g 0.23–10.1 0.23–10.1 0.4–8.1 0.23–10.1 0.23–10.1 0.4–8.1

EOC mean value mL per 100 g 4.8 4.8 4.89 4.8 4.8 4.89

EOC SD mL per 100 g 2.61 2.61 2.34 2.61 2.61 2.34

λ range nm 939–1797 939–1797 939–1797 1000–2500 1000–2500 1000–2500

LV — 3 3 3 6 6 6

R2 — 0.92 0.92 0.58 0.93 0.94 0.91

SE(C/CV/P) mL per 100 g 0.75 0.77 2.20 0.7 0.68 0.69

Bias mL per 100 g 1.40 × 10−2 1.55 × 10−2 −2.04 4.5 × 10−7 1.08 × 10−2 8 × 10−2

SE(C/CV/P)c mL per 100 g 0.75 0.77 0.81 0.7 0.68 0.68

RSE(C/CV/P)c Relative % 15 15 18 15 15 14

CVc Relative % 15 15 18 15 15 14

RPDc — 3.54 3.44 3.51 (1.30)a 3.7 3.82 3.24

RPIQc — 6.19 6.01 5.03 (1.87)a 6.6 6.8 4.55

RERc — 13.17 12.78 9.45 (3.50)a 14.04 14.51 11.31

Spectral treatment Golay second derivative (step 3) SNV + detrending

N, number of samples; EOC, essential oil content; SD, standard deviation; λ range, wavelength range of PLS model; LV, number of latent variables;
R2, determination coefficient; SE, standard error; RSE, relative standard error of prediction; CV, coefficient of variation; RPD, ratio of performance to
deviation; RPIQ, ratio of performance to interquartile; RER, ratio of error to range; subscript ‘c’ (SEc, RSEc, CVc, RPDc, RPIQc and RERc), parameters
calculated after bias correction; SNV, standard normal variate.
a Values in parentheses are RPD, RPIQ and RER before correction for bias.

Fig. 1A and the quantile–quantile plot in Fig. 1B illustrate the dis-
tribution of the EOC data set. The pattern of the quantile–quantile
plot suggests a non-normal distribution of data, mainly
at the extremities. Data analysis using Kolmogorov–Smirnov
(P = 1.03 × 10−049) and Shapiro–Wilk (P = 0.017) tests at a thresh-
old of 5% confirmed the non-normal distribution.

PLS model using hand-held NIRS
The PLS model data obtained using hand-held NIRS are reported
in Table 1. Several parameters were calculated to evaluate the
accuracy of the model and to measure the fit of the predicted

values to the reference data. Figure 2 shows the actual versus
predicted values for calibration (Fig. 2A) and validation (Fig. 2B).
The calibration step was evaluated according to R2 and SEC, for
which values of 0.92 and 0.75 mL per 100 g DM respectively were
obtained. The number of LV used was three, which is relatively
small, thus avoiding potential overfitting of the model.22 The
cross-validation procedure presented a very small bias close to
zero, while R2 and SECV values were close to those obtained in
calibration. Three parameters allowing us to evaluate the accuracy
of the model according to the range of reference data were
calculated, RPDc, RERc and RPIQc, whose values were 3.54, 13.17
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Figure 2. Actual versus predicted values of EOC using hand-held NIR device PHAZIR 1018: A, calibration; B, validation; , data without bias correction; ,
data corrected for bias value.

and 6.19 respectively for calibration. In cross-validation, RPDc,
RERc and RPIQc were 3.44, 12.78 and 6.01 respectively. For both
calibration and cross-validation the RPDc and RERc values are
greater than 3 and 10 respectively. This means that the model could
be suitable for quantitative analysis.23 RPIQ is used in the case of
a non-normal distribution of the reference data set to standardize
the SE value. RPIQ uses the inter-quartile (IQ = Q3 − Q1) parameter
instead of SD to standardize the SE value. In the case of a non-
normal distribution, IQ could be a better indicator of the data
spread around the median. In the present study the RPIQ value
indicates that the accuracy of the model is more than five times
lower than the interquartile distance.

A validation step was performed with samples not used in the
cross-validation model. The R2 value obtained during validation
(R2 = 0.58) was lower than that obtained in cross-validation
(R2 = 0.92). An SEP value of 2.20 mL per 100 g DM was calculated,
including a bias value of −2.04 mL per 100 g DM. Thus, after
correcting for bias, the SEPc value decreased to 0.81 mL per 100
g DM. Differently to R2, the SEPc value remained close to the SEC
value obtained in the cross-validation step (0.77 mL per 100 g DM).
RPDc was greater than 3 (3.51), but RERc decreased to 9.45. RPIQc

remained at a high level with a value of 5.03.

PLS model using FT-NIRS
The PLS model data obtained using FT-NIRS are reported in Table 1.
Figure 3 shows the actual versus predicted values for calibration
(Fig. 3A) and validation (Fig. 3B). The same parameters as for hand-
held NIRS were calculated to evaluate the accuracy of the model
and to measure the fit of the predicted values to the reference
data. R2 and SEC values of 0.93 and 0.7 mL per 100 g DM were
obtained in the calibration step. Similar R2 and SE values were
obtained in cross-validation. The number of LV remained relatively
small at six and the bias was negligible. RDPc values of 3.7 and 3.82
and RERc values of 14.04 and 14.51 were obtained in calibration
and cross-validation respectively. In the validation step, R2 and
SEP values were at least equal to or better than those calculated
in calibration. RPIQ values were 6.6 and 6.8 for calibration and
cross-validation respectively and 4.55 in the validation step. No
bias was measured during validation (0.08 mL per 100 g DM), in
contrast to the model validation with the hand-held NIR device.

DISCUSSION
The aim of the present study was to evaluate the ability of a
hand-held NIR device for determining the EOC of oregano dry
powder and to compare its performance with that of an FT-NIR
spectrometer commonly used in the laboratory. The advantages
of a hand-held device are that it can be moved between several
breeding sites and is cheaper than laboratory NIR equipment.

The results showed that the determination of EOC was possible
with the FT-NIR spectrometer and promising with the hand-held
NIR device. In terms of performance, chemometric analysis of the
FT-NIR data allowed us to determine the EOC with an accuracy of
about 0.70 mL per 100 g DM (cross-validation and validation). The
R2 value higher than 0.9 (calibration and validation) showed the
good fit between reference and predicted data. Furthermore, no
bias was measured in the model using FT-NIR data.

The model implemented using hand-held NIR data showed
promising results but would not be usable in practice in its present
state of development. Indeed, in terms of performance the model
allowed a measurement accuracy of 0.77 mL per 100 g DM
(calibration) and 0.81 mL per 100 g DM (validation), slightly lower
than the FT-NIR results. The R2 values, particularly in validation
(R2 = 0.58), showed that the reference and predicted values did
not fit as well as with FT-NIR data. Moreover, a bias was measured
in the validation step between reference and predicted values.
This bias showed that the predicted values underestimated the
reference values by about 2 mL per 100 g DM. The presence of
such a bias is difficult to understand.

The bias is a systematic error that can have different origins
in the chain of steps leading to the construction of a prediction
model using NIRS data.

• The first two potential sources of error are a lack of
reproducibility of the reference measurement and a lack of
reproducibility of the sample preparation procedure between
calibration and validation. In the present work the procedures
were exactly the same when analysing samples of the calibration
and validation steps.

• Another potential source of systematic error is a significant
change in environmental conditions during spectral acquisition.
In particular, variations in temperature and relative humidity
could affect the quality of NIR spectra collected. In this study,
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Figure 3. Actual versus predicted values of EOC using FT-NIR spectrometer: A, calibration; B, validation.

measures of calibration and validation were performed in the
same laboratory under controlled environmental conditions.

• Also, a high genetic variability of plant samples could induce a
systematic error between calibration and validation steps. In the
present experiment, calibration was performed with samples
of various genetic backgrounds (hybrids) to avoid or limit this
effect. Storage of plant material for too long in unsuitable
conditions could lead to chemical or physical deterioration,
which may also introduce a bias. In the present study the
spectral acquisitions of calibration and validation samples were
carried out at different times, so it is possible that the samples
for validation were altered. However, to confirm this hypothesis,
a bias should be found in the model using the FT-NIR spectra,
but this was not the case.

• A last potential source of bias is related to the manipulator
itself. Indeed, a portable spectrometer requires working with
the utmost rigour and perfect reproducibility. This parameter
was not considered in this study and will be given special
attention in future steps for the development of methods using
a portable spectrometer.

Concerning the other calculated parameters, RPD, CV and RER
are commonly used by NIR spectroscopists to evaluate their models
and, more precisely, the error of the models as a function of the
range values of the reference measure. To consider a model as
‘correct’ for ‘plant screening’, RPD and RER values have to be

equal to or greater than 3 and 10 respectively.23–25 RPD values of
the model obtained with FT-NIR spectral data were higher than
those of the model obtained with hand-held NIR spectral data.
The RER value of the FT-NIR model reached 11.31 in validation,
confirming the possible usability of such a device for screening
samples. Concerning the model using hand-held NIR data, RPD
and RER values were only satisfactory after correction for bias,
which increased RPD from 1.30 to 3.51 and RER from 3.50 to
9.45. The relatively low RER value obtained after correction for
bias (<10) confirms the relatively low R2 value (0.58) and thus the
non-usability of this model at its present stage of development.

RPIQ is a parameter allowing one to evaluate the spread of
predicted versus reference data around the median in cases
where the reference data distribution is non-normal (skewed
distribution). Measurements of EOC in the present study followed
a non-normal distribution as confirmed by Kolmogorov–Smirnov
and Shapiro–Wilk tests. Thus RPIQ could be a more useful

parameter than RPD to describe the obtained model of
predictions. As stated above, RPIQ was higher for the model
implemented with FT-NIR data (4.55) than for that implemented
with hand-held NIR data before correction for bias (1.87). In the
model using data from the hand-held NIR device, the RPIQ value
of 1.87 means that the model error is less than two times smaller
than the interquartile range of reference data, which is far from
sufficient for good model performance. In contrast, the RPIQ value
of 4.55 obtained with FT-NIR data means that the error of the
model is less than four times smaller than the interquartile range
of reference data. In this last case the performance of the model
can be considered as good. Since the RPIQ parameter is a relatively
recent index, no scale value has been published yet (contrary to the
RPD parameter) allowing one to evaluate the prediction models.

In the present state of the model, with a 2 mL per 100 g DM
bias measured during validation, the hand-held NIR device is not
usable in practice. Additional samples of oregano allowing one
to increase the variability of samples (various EOCs, geographical
origins, cultivation practices, etc.) have to be collected to enrich
the model and thus try to diminish the bias value.

CONCLUSION
The aim of this study was to investigate the potential of NIRS
to facilitate the screening of hundreds or thousands samples of
oregano, with particular emphasis on their EOC, in the context of
a breeding programme.

Two approaches in terms of technology/device were attempted:
hand-held NIRS and FT-NIRS. The approach using FT-NIR allowed
the correct prediction of oregano EOC with an accuracy of 0.68 mL
per 100 g DM. All parameters used to evaluate the performance
of the model reached expected levels, indicating that the FT-NIR
approach is suitable for good screening. Although the hand-held
NIR approach is promising, the obtained results are not suitable
for use in practice. The performance of the model (SEPc = 0.81
mL per 100 g DM) is inferior to that obtained with the FT-NIR
approach. Moreover, a bias correction of about 2 mL per 100 g
DM had to be made to achieve an accuracy of 0.81 mL per 100
g DM. However, the RPIQ value calculated after bias correction is
promising for future development of hand-held NIRS. In a next
step the calibration data set has to be enriched with additional
samples from different origins and different levels of EOC in order
to minimize the bias value. The development of measurement
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methods using portable tools must take into account the effect of
the manipulator in order to minimize the systematic error between
calibration and validation measurements.
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‘Carva’. Rev Suisse Vitic Arboric Hortic 34(2):I–VIII (2002).

3 Van Der Mheen H, Selection and production of oregano rich in essential
oil and carvacrol. Acta Hort 709:95–99 (2006).
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