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Abstract
The	 foraging	 and	 nesting	 performance	 of	 bees	 can	 provide	 important	 information	
on	 bee	 health	 and	 is	 of	 interest	 for	 risk	 and	 impact	 assessment	 of	 environmental	
stressors.	While	radiofrequency	identification	(RFID)	technology	is	an	efficient	tool	
increasingly	used	for	the	collection	of	behavioral	data	 in	social	bee	species	such	as	
honeybees,	behavioral	studies	on	solitary	bees	still	largely	depend	on	direct	observa-
tions,	which	is	very	time-	consuming.	Here,	we	present	a	novel	automated	methodo-
logical	approach	of	 individually	and	simultaneously	 tracking	and	analyzing	 foraging	
and	nesting	behavior	of	numerous	cavity-	nesting	solitary	bees.	The	approach	consists	
of	monitoring	nesting	units	by	video	recording	and	automated	analysis	of	videos	by	
machine	learning-	based	software.	This	Bee Tracker	software	consists	of	four	trained	
deep	learning	networks	to	detect	bees	that	enter	or	leave	their	nest	and	to	recognize	
individual	IDs	on	the	bees’	thorax	and	the	IDs	of	their	nests	according	to	their	posi-
tions	in	the	nesting	unit.	The	software	is	able	to	identify	each	nest	of	each	individual	
nesting	 bee,	which	 permits	 to	measure	 individual-	based	measures	 of	 reproductive	
success.	Moreover,	 the	software	quantifies	 the	number	of	cavities	a	 female	enters	
until	it	finds	its	nest	as	a	proxy	of	nest	recognition,	and	it	provides	information	on	the	
number	and	duration	of	foraging	trips.	By	training	the	software	on	8	videos	record-
ing	24	nesting	females	per	video,	the	software	achieved	a	precision	of	96%	correct	
measurements	of	these	parameters.	The	software	could	be	adapted	to	various	experi-
mental	setups	by	training	it	according	to	a	set	of	videos.	The	presented	method	allows	
to	efficiently	collect	large	amounts	of	data	on	cavity-	nesting	solitary	bee	species	and	
represents	a	promising	new	tool	for	the	monitoring	and	assessment	of	behavior	and	
reproductive	success	under	laboratory,	semi-	field,	and	field	conditions.
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1  |  INTRODUC TION

Bees	provide	pollination	services	to	wild	plants	and	crops	and	are	
essential	for	biodiversity	and	human	food	supply	(Garibaldi	et	al.,	
2014;	Klein	 et	 al.,	 2007;	Ollerton	et	 al.,	 2011).	 They	 include	 im-
portant	flagship	and	indicator	species	and	are	used	for	the	mon-
itoring	 and	 impact	 assessment	 of	 environmental	 stressors	 such	
as	 habitat	 degradation,	 pesticide	 exposure,	 or	 pathogens	 (Potts	
et	 al.,	 2010,	2016;	Schönfelder	&	Bogner,	2017;	Woodard	et	 al.,	
2020).	An	 important	 component	 in	 the	 evaluation	of	 bee	health	
is	the	assessment	of	reproductive	success	and	foraging	behavior,	
as	key	drivers	of	population	development	and	provisioning	of	pol-
lination	 services	 (Artz	&	Pitts-	Singer,	 2015;	Ganser	 et	 al.,	 2020;	
Henry	et	al.,	2012;	Siviter	et	al.,	2021).	Such	assessments	require,	
however,	 accurate	 and	 efficient	 tools	 to	 collect	 the	 often	 large	
amount	of	data	required	to	assess	bee	health,	especially	if	data	on	
individual	bees	 shall	 be	 collected	 (Crall	 et	 al.,	 2018;	Nunes-	Silva	
et	al.,	2019).

Recent	research	and	environmental	risk	assessments	have	mainly	
focused	on	the	honeybee,	Apis mellifera,	and	a	few	other	social	bee	
species	 (e.g.,	Bombus terrestris)	as	 indicator	species	 (Goulson	et	al.,	
2015;	Potts	et	al.,	2016).	Only	relatively	recently,	there	is	increased	
recognition	of	the	fact	that	the	effect	of	different	environmental	driv-
ers	can	substantially	vary	between	bee	species	and	depend	on	their	
functional	and	life-	history	traits	such	as	sociality,	body	size,	foraging,	
or	nesting	traits	(Brittain	&	Potts,	2011;	Sgolastra	et	al.,	2019).	While	
social	bee	species	may	compensate	for	temporary	limited	stress	ex-
posure	 (e.g.,	pesticide	applications)	 at	 a	 later	point	 in	 time	 (Straub	
et	al.,	2015),	it	should	directly	impair	reproductive	output	in	solitary	
bees	(Sgolastra	et	al.,	2019).	Risk	assessments	therefore	increasingly	
consider	also	solitary	bee	species	for	the	monitoring	of	 impacts	of	
stressors	 on	 bee	 pollinators,	 prominently	 including	 cavity-	nesting	
species	(Boff	et	al.,	2020;	Rundlöf	et	al.,	2015;	Stuligross	&	Williams,	
2020;	Zurbuchen	et	al.,	2010).	In	Europe	for	example,	the	European	
Food	Safety	Authority	(EFSA)	has	proposed	to	integrate	two	cavity-	
nesting	solitary	bee	species,	Osmia bicornis and O. cornuta	 for	 risk	
assessment	of	plant	protection	products	on	bees,	including	higher-	
tier	assessments	of	sublethal	effects	on	reproductive	success	(EFSA,	
2013;	Franke	et	al.,	2021).

Solitary	bees	can	respond	through	changes	in	their	nesting	and	
foraging	behavior	to	various	environmental	stressors	as	pesticides,	
habitat	degradation,	or	pathogens	(Artz	&	Pitts-	Singer,	2015;	Boff	
et	 al.,	 2020;	Klaus	 et	 al.,	 2021;	Klinger	 et	 al.,	 2021;	 Siviter	 et	 al.,	
2021;	 Stuligross	 &	Williams,	 2020).	 However,	 while	 foraging	 be-
havior	of	 individuals	of	social	bee	species	such	as	A. mellifera can 
automatically	be	recorded	with	RFID	technology	(Nunes-	Silva	et	al.,	
2019),	no	such	tool	is,	to	our	knowledge,	currently	available	for	the	
collection	 of	 such	 data	 for	 solitary	 bees.	 As	 studies	 with	 cavity-	
nesting	solitary	bees	typically	require	nesting	units	with	numerous	
scattered	nesting	cavities	(Figure	1),	RFID,	which	has	a	short	reach	
of	 the	 signal	 (Nunes-	Silva	 et	 al.,	 2019),	 is	 difficult	 to	 implement.	
Furthermore,	tracking	foraging	behavior	and	reproductive	success	
of	 multiple	 individual	 females	 requires	 correct	 identification	 and	
assignment	of	 the	cavities	used	 for	nesting	by	 individual	 females,	
which	can	only	be	achieved	with	a	large	number	of	readers	at	high	
costs.	So	far,	studies	on	solitary	bee	species	have	therefore	largely	
depended	on	direct	visual	observation	to	monitor	foraging	behavior	
or	 the	nesting	progress	of	 individual	 females	 (Artz	&	Pitts-	Singer,	
2015;	Franke	et	al.,	2021),	which	is	very	time-	consuming,	hamper-
ing	 research	and	environmental	 risk	assessment	with	solitary	bee	
species.

Software	can	be	used	to	automatically	detect	animals	in	images	
or	analyze	animal	behavior	recorded	with	videos	(Eikelboom	et	al.,	
2019;	Pennington	et	al.,	2019).	For	bees,	automated	image	classifi-
cation	was	used	to	count	nests	of	ground-	nesting	solitary	bees	(Hart	
&	Huang,	2014),	to	monitor	the	activity	of	individually	tagged	hon-
eybees	(Chen	et	al.,	2012;	Odemer,	2021)	and	for	the	detection	of	
parasites	and	pollen-	bearing	 in	honeybees	 (Rodriguez	et	al.,	2018;	
Schurischuster	et	al.,	2018).	Here,	we	present	new	machine	learning-	
based	software,	which	can	automatically	extract	and	analyze	data	
on	the	foraging	and	nesting	behavior	of	individually	marked,	cavity-	
nesting	solitary	bees	from	videos.	The	software	is	provided	free	and	
open-	source	including	the	underlying	Python	code,	as	well	as	a	user	
manual,	which	makes	the	software	also	accessible	to	users	who	have	
no	programming	background.	The	machine-	learning	networks	that	
permit	to	train	the	software	and	parameters	of	the	input	file	can	be	
adapted	to	specific	requirements,	which	allows	to	use	the	software	
in	a	wide	range	of	experimental	setups.

F I G U R E  1 (a)	Nesting	Osmia bicornis 
female	bee	marked	with	an	ID	tag	(unique	
color–	digit	combination)	attached	to	
its	thorax,	(b)	nesting	unit	composed	of	
layers	(wooden	boards)	with	10	cavities	
each,	(c)	layer	with	cavities	covered	with	
plastic	foil	for	which	nesting	progress	and	
offspring	production	can	be	tracked,	and	
(d)	specifications	of	layers	used	for	nesting	
units—	black:	170	mm;	red:	18	mm;	green:	
11.5	mm;	blue:	9	mm;	and	yellow:	8	mm

(a) (b)

(c)

(d)

9mm
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    |  3 of 8KNAUER Et Al.

2  |  METHODS

2.1  |  Bee Tracker software

The Bee Tracker	software	is	able	to	recognize	bees	entering	and	leav-
ing	cavities	at	a	nesting	unit.	Individual	bees	can	be	identified	if	they	
are	marked	with	ID	tags	from	marking	kits	conventionally	used	for	
honeybee	 queen	 rearing	 (Figure	 1).	 In	 the	 published	 open-	source	
version	of	the	software,	digits	from	1	to	8	and	the	colors	white,	yel-
low,	and	green	(up	to	24	unique	digit–	color	combinations)	can	be	rec-
ognized.	Moreover,	the	software	can	identify	each	nesting	cavity	of	
nesting	units	(constructed	as	in	Figure	1).	Cavities	get	an	ID	based	
on	their	position	in	the	nesting	unit	(according	to	its	“row”	and	“col-
umn”	in	the	nesting	unit,	see	the	manual	provided	in	the	Supporting	
Information	for	further	details).	In	the	published	version	of	the	soft-
ware,	cavities	of	up	to	12	rows	and	10	columns	(up	to	120	cavities)	
per	nesting	unit	can	be	 identified.	The	software	 is	further	capable	
to	 detect	 and	measure	 the	 entering	 and	 leaving	of	 a	 cavity	 by	 an	
individual	 bee	 and	 the	 video	 timestamp	 of	 each	 of	 these	 events.	
From	the	collected	list	of	events	and	some	set	input	parameters	(see	
below),	the	software	can	assign	females	to	the	cavity	they	are	nest-
ing	in,	calculate	flight	duration,	and	count	the	number	of	cavities	a	
bee	probes	until	it	finds	the	one	it	is	nesting	in	(nest	recognition;	see	
Artz	&	Pitts-	Singer,	2015).

Before	the	software	can	be	used	for	the	collection	of	this	data,	
the	precision	of	 the	software	needs	 to	be	evaluated	 for	 the	setup	
in	use	and,	if	unsatisfactory,	the	software	must	be	trained	on	a	set	
of	representative	videos.	The	machine-	learning	network	(see	below:	
Machine- learning algorithms and training of models)	 can	 further	 be	
used	to	expand	the	spectra	of	bee	and	cavity	IDs	that	the	software	
is	able	to	recognize.	How	the	software	can	be	trained	to	the	setup	in	
use	and/or	additional	bee	and	cavity	IDs	is	described	in	the	manual	
(provided	in	the	Supporting	Information).

2.2  |  Input videos

The	 input	videos	must	be	 in	MP4	format	and	have	an	aspect	ratio	
of	16:9.	The	software	was	developed	and	validated	with	an	aspect	
ratio	of	3860	×	2160	(4K),	which	returns	well-	resolved	images	that	
generate	outputs	with	a	high	measurement	precision.	A	lower	reso-
lution	could	impair	the	precision,	but	the	software	can	still	process	
the input.

2.3  |  Generated output

The	software	will	create	a	new	subfolder	within	the	selected	result	
folder	for	each	input	video.	Inside	each	subfolder,	the	following	out-
puts	are	stored	by	the	software:

1. all_events_unfiltered:	 Inside	 this	 csv	 file,	 all	 detected	 events	
are	 listed	 containing	 the	 video	 timestamp,	 the	 bee	 ID,	 the	

event	 type	 (entering	 or	 leaving),	 and	 the	 cavity	 ID.	 This	 list	
is	 completely	 unfiltered	 and	 may	 contain	 errors.

2. error_corrected_events:	 This	 csv	 file	 contains	 all	 events	 that	
remain	 after	 error	 correction:	 Events	with	unidentified	bee	 IDs	
get	removed.	The	software	additionally	identifies	missing	events	
within	 sequences	 of	 enter–	leave–	enter.	 Such	 sequences	 with	
missing	 events	 are	 not	 considered	 for	 the	 creation	 of	 below-	
described	 output	 files	 (address_book,	 nest_recognition,	 flight_
list).	Besides	the	video	timestamp,	the	bee	ID,	the	cavity	ID,	and	
the	type	of	event	(entering	or	leaving	a	cavity),	this	file	therefore	
also	indicates	for	each	event	whether	it	was	used	for	the	output	
files	address_book,	nest_recognition,	and	flight_list.

3. address_book:	This	csv	file	contains	all	bees	that	were	assigned	
to	a	nest	and	lists	the	according	bee	and	cavity	IDs.	These	data	
(assignments	between	individual	bees	and	the	cavity	(or	cavities,	
respectively)	they	are	nesting	in)	are	of	interest	for	assessments	
of	nesting	progress	and	reproductive	success	of	individual	nest-
ing	females.	In	order	to	assign	females	to	cavities	that	are	used	for	
nesting	(in	contrast	to	simply	probed	cavities	not	used	for	nest-
ing),	 a	 cavity	 is	 only	 assigned	 to	 an	 individual	 bee	 if	 (i)	 the	bee	
stays	inside	the	cavity	for	a	time	span	that	is	minimally	required	
by	a	nesting	bee	to	unload	collected	pollen	for	offspring	provision,	
and	(ii)	the	bee	does	not	enter	another	cavity	during	a	time	span	
that	 is	minimally	 required	by	a	bee	 to	collect	pollen	or	material	
such	as	mud	for	nest	construction	(e.g.,	construction	of	brood	cell	
walls).	The	default	setting	of	these	two	time	spans	is	both	40	s	in	
the	published	open-	source	version	of	the	software.	These	values	
were	chosen	based	on	over	20	h	of	direct	observation	of	Osmia 
bicornis	females	nesting	in	a	natural	habitat	in	Switzerland	(Bättig	
D.,	unpublished	data).	However,	 the	species	under	study	or	 the	
experimental	setting	may	require	adjustment	of	these	threshold	
values.	This	can	be	done	in	the	“config”	file	of	the	software,	which	
can	be	selected	as	an	optional	input	file	for	the	analysis	(see	soft-
ware	manual	in	the	Supporting	Information).
Nesting	 progress,	 that	 is,	 the	 number	 of	 produced	 brood	 cells	
and	 offspring,	 can	 be	 tracked	 by	 repeatedly	 photographing	
the	 nest	 cavities	 (Figure	 1),	 for	 example,	 before	 and	 after	 an	
assessment	 day.	 Linking	 these	 data	 with	 the	 address_book	 file	
(created	 from	 a	 video	 recorded	 on	 the	 same	 assessment	 day)	
based	on	cavity	 IDs	permits	to	measure	 individual	reproductive	
success	 per	 female	 for	 this	 time	 period.

4. nest_recognition:	 This	 csv	 file	 contains	 the	 number	 of	 cavities	
a	 female	 enters	 before	 finding	 its	 nest	 (i.e.,	 number	 of	 probed	
“wrong”	 cavities	 before	 finding	 the	 “correct”	 nesting	 cavity).	
Besides	 the	bee	 ID	and	 the	number	of	probed	cavities,	 the	 file	
also	lists	the	video	timestamp.

5. flight_list:	This	csv	file	provides	flight	durations	of	individual	fe-
males	 from	 leaving	 the	nesting	cavity	until	 returning	 to	 it	again	
(i.e.,	foraging	trip	or	mud	collection	duration).	Besides	the	bee	ID	
and	the	flight	duration,	the	file	also	lists	the	video	timestamp.	If	
of	interest,	flight	activity,	defined	here	as	females	that	perform	at	
least	one	flight	during	the	observation	time,	can	be	assessed	by	
classifying	 females	 that	are	 listed	 in	 the	 flight_list	 file	as	active.	
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For	this	measurement,	the	number	of	total,	alive	females	needs	to	
be	known,	however,	which	can	be	assessed	by	taking	pictures	of	
the	nest	layer	(Figure	1)	during	the	night	when	females	are	roost-
ing inside cavities.

6. Visualization:	Through	the	“visualize	results”	option,	a	video	file	
in	mp4	format	can	be	created	with	all	detected	events	visualized.	
This	file	can	be	used	to	manually	check	the	performance	of	the	
software	and	to	find	potential	errors,	which	can	be	used	to	retrain	
the	software	(see	below)	and	improve	the	precision.

2.4  |  Measurement of precision

To	measure	 the	 precision	 of	 the	 software	 in	 a	 set	 of	 videos,	 the	
created	visualization	videos	can	be	manually	checked	and	the	cor-
rect	assignment	of	 the	bee	 ID,	cavity	 ID,	and	event	 type	 (entering	
or	leaving)	can	be	reviewed	for	single	events.	Only	events	listed	in	
the	error_corrected_events	file	as	events	that	were	used	to	create	
measurements	 in	 output	 files	 (last	 column	 contains	 a	 yes)	 should	
be	 checked	and	used	 for	 the	measurement	of	 precision.	Precision	
can	be	calculated	as	the	proportion	of	fully	correct	assignments	as	
Precision = TP	/	(TP + FP),	where	TP	is	the	number	of	true	positives	
and	FP	the	number	of	false	positives.	The	measured	precision	is	valid	
for	all	extracted	measurements:	assignment	of	females	to	their	nest	
cavity,	flight	duration,	and	number	of	probed	cavities.

The	 software	was	 designed	 to	 achieve	 a	 high	 precision	 at	 the	
expense	of	the	recall	(fraction	of	events	that	was	retrieved),	which	is	
of	minor	interest	in	this	type	of	analysis	as	it	only	affects	the	sample	
sizes	but	not	the	extracted	measurements	themselves.	We	therefore	
did	not	implement	the	possibility	to	assess	the	recall.

2.5  |  Machine- learning algorithms and 
training of models

The Bee Tracker	 software	 uses	 a	 combination	 of	 three	machine-	
learning	algorithms	to	generate	the	above-	mentioned	outputs:	the	
Faster	R-	CNN	object	detection	pipeline	(Ren	et	al.,	2017),	a	YoloV3	
(Redmon	&	Farhadi,	2018)	object	detection	network,	and	a	custom	
Keras	 image	classification	network	(Chollet,	2015).	The	software	
takes	 a	 video	 of	 a	 nesting	 unit	 as	 described	 above	 as	 input	 and	
as	a	first	step	detects	all	marked	bees	and	cavities	 in	each	video	
frame	 using	 two	 trained	 Faster	 R-	CNN	networks.	 Subsequently,	
the	 marker	 tags	 (unique	 digit–	color	 combination;	 Figure	 1)	 are	
identified	by	a	YoloV3	network	on	each	previously	detected	bee.	
Additionally,	 all	 identified	markers	are	 further	 classified	 into	 the	
digits	1–	8	by	a	custom	Keras	network.	Knowing	 the	cavity	posi-
tions	and	bee	positions	alongside	with	the	bee	ID	for	each	individ-
ual	frame,	a	custom	object	tracking	algorithm	is	applied	to	these	
data	 in	order	 to	 link	 the	 individual	 frames	 together	and	obtain	a	
movement	path	for	each	bee.	By	analyzing	the	start	and	end	point	
of	each	detected	movement	path,	 the	software	 is	able	 to	detect	
cavity	entering	and	leaving	events.

The	 software	 relies	 on	 the	 four	 previously	mentioned	 trained	
machine-	learning	 models.	 The	 model	 for	 detecting	 the	 bees	 was	
trained	on	1303	individual	images.	The	cavity	detection	model	was	
trained	on	120	individual	images	of	nesting	units;	each	nesting	unit	
contained between 60 and 130 cavities. The color tag detection 
model	was	trained	on	4921	individual	images	of	bees,	and	the	digit	
classification	model	was	 trained	with	 10,347	 individual	 images	 of	
number	 tags.	 Additionally,	 various	 data	 augmentation	 techniques	
were	applied	such	as	rotations,	random	brightness	adjustments,	ran-
dom	contrast	adjustments,	and	random	saturation.	Further	detailed	
information	about	 the	model	 trainings	 is	provided	 in	 the	software	
manual	(see	Supporting	Information).

2.6  |  Software evaluation

To	evaluate	the	software	and	measure	the	precision	of	the	analy-
ses	and	generated	outputs,	we	recorded	a	total	of	23	videos	from	
15	nesting	units	during	 two	consecutive	days	using	 the	nesting	
units	 as	 described	 in	 Figure	 1.	 All	 nesting	 units	were	 placed	 in	
large	flight	cages	(54	m2)	that	contained	sufficient	floral	sources	
for	offspring	provisioning	by	nesting	female	Osmia bicornis	(sown	
purple	tansy,	buckwheat,	and/or	field	mustard).	A	total	of	24	fe-
males	 marked	 with	 the	 above-	described	 24	 unique	 digit–	color	
ID	 tags	were	 released	 into	 each	 of	 these	 flight	 cages,	 and	 vid-
eos	were	recorded	after	initiation	of	nesting.	Each	video	was	re-
corded	between	9	a.m.	and	3	p.m.	when	flight	activity	was	high;	
recording	times	ranged	between	2	and	4	h.	Cameras	were	placed	
at	a	distance	of	1	m	from	the	nesting	unit	with	frontal	view	(cam-
era	placed	at	same	height	as	nesting	unit).	From	the	recorded	vid-
eos,	 8	 randomly	 selected	ones	were	used	 to	 train	 the	 software	
to	 this	experimental	 setup,	while	 the	 remaining	15	videos	were	
used	 to	measure	 precision.	 Precision	was	 assessed	by	manually	
checking	180	randomly	selected	events	(12	events	per	video)	for	
their correctness using the visualization	 option	 of	 the	 software	
(see	above).	Only	events	that	were	used	for	the	generation	of	out-
put	csv	files	(after	error	correction)	were	inspected	as	described	
above.

For	 the	comparability	of	bee	health	under	different	environ-
mental	 conditions	 (e.g.,	 different	 field	 sites	 with	 variable	 habi-
tat	 quality	 or	 flight	 cages	with/without	 pesticide	 application),	 a	
similar	 precision	 across	 videos	 is	 required.	We	 therefore	 tested	
whether	precision	varied	between	videos	in	our	set	of	evaluated	
videos	in	a	generalized	linear	model	with	a	binomial	distribution.	
The	correctness	of	the	detected	event	(correct	or	wrong)	was	in-
cluded	as	the	response	variable	and	the	video	ID	as	explanatory	
variable.	As	the	software	only	assigns	females	to	a	nest	that	are	
active	during	recording	and	fulfill	certain	criteria	(as	described	in	
the	section	address_book),	we	further	fitted	a	generalized	linear	
model	 with	 a	 binomial	 distribution	 to	 test	 whether	 the	 propor-
tion	 of	 females	 that	 can	 be	 assigned	 to	 a	 nest	 cavity	 per	 video	
depends	on	the	video	recording	time.	The	analysis	was	done	in	R	
4.1.	(R	Core	Team,	2021).
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3  |  RESULTS

On	average,	the	Bee Tracker	software	could	successfully	assign	67%	
(lower	CI:	 61%,	 upper	 CI:	 71%)	 of	 the	 alive	 females	 to	 a	 nest	 per	
video.	The	probability	that	a	female	gets	assigned	to	a	nest	did	not	
depend	on	video	recording	time	(χ2 =	1.82,	p =	 .18),	which	ranged	
between	2	and	4	h.	Per	video,	the	software	generated	on	average	
nest_recognition	 files	 with	 80	 measures	 of	 nest	 recognition	 (the	
number	a	female	enters	any	cavity	until	it	finds	the	one	it	is	nesting	
in)	per	hour	and	flight_list	files	with	61	flights	per	hour.

The	precision	of	the	software	was	evaluated	by	manually	check-
ing	the	created	visualization	videos	and	reviewing	the	correct	assign-
ment	of	the	bee	ID,	cavity	ID,	and	event	type	(entering	or	leaving)	of	
single	events.	Per	video,	96.1%	(lower	CI:	92.6%,	upper	CI:	98.3%)	
of	the	checked	events	were	detected	correctly	on	average,	whereas	
precision	did	not	depend	on	the	video	that	was	used	for	the	analysis	
(χ2 =	13.95,	p =	.45;	Figure	2).	The	seven	errors	that	were	found	all	
related	 to	 the	bee	 ID.	Three	errors	were	caused	by	a	wrong	color	
detection:	Green	was	classified	falsely	as	yellow	in	all	these	cases.	
The	remaining	four	errors	were	caused	by	an	ID	swap	between	two	
bees	that	had	crossing	movement	paths,	which	led	to	a	commutation	
of	the	IDs	between	bees.

4  |  DISCUSSION

4.1  |  Software performance

The Bee Tracker	software	is	a	helpful	tool	to	collect	large	amounts	of	
data	on	the	nesting	and	foraging	behavior	of	cavity-	nesting	solitary	
bees	 in	 an	 automated	way.	 It	 identifies	 individual	 nesting	 females	
and	assigns	them	to	their	nests.	This	permits	to	obtain	robust	data	
on	per	female	reproductive	success,	if	nesting	progress	within	nests	

is	additionally	recorded.	Moreover,	the	software	counts	the	number	
of	cavities	a	female	probes	until	it	finds	its	nest,	collects	information	
on	the	flight	duration,	and	allows	to	assess	flight	activity.	Once	the	
software	 is	 trained	 for	 the	experimental	 setup	 in	use,	 the	method	
requires low labor input but can generate large data sets with a high 
measurement	precision.	Here,	we	showed	 that	a	precision	of	96%	
can	 be	 achieved	with	 a	 relatively	 low	 training	 effort	 of	 about	 30	
working	hours.	Minor	adaptations	may	further	improve	the	perfor-
mance	of	the	software.

The	precision	of	the	Bee Tracker	exceeds	precision	values	typi-
cally	found	in	automated	image	analysis	software	(Eikelboom	et	al.,	
2019;	 Gallmann	 et	 al.,	 2020),	 but	 reaches	 values	 typical	 for	 bee	
counters	(Odemer,	2021).	The	software	may,	however,	only	achieve	
the	 here	 reported	 precision	 of	 96%	 in	 experiments	with	 a	 similar	
setup,	with	respect	to	light	conditions	during	video	recording,	hues	
and	digits	of	bee	IDs,	and	the	shape,	size,	and	location	of	the	nest	
cavities	in	the	nesting	units.	For	variant	setups,	the	training	of	the	
software	may	need	 to	be	 repeated	 to	 achieve	a	 comparable	mea-
surement	 precision	 of	 the	 software	 analysis.	While	 errors	 by	 bee	
ID	 swapping	 cannot	 be	 entirely	 avoided	 due	 to	 the	 limitations	 of	
the	centroid	object	tracking	algorithm	used	by	the	software,	errors	
caused	by	color	misclassifications	between	green	and	yellow	were	
probably	caused	by	the	convergence	of	spectra	under	different	light	
conditions	and	could	likely	be	reduced	by	choosing	colors	for	ID	tags	
with	more	distinct	spectra.	Thus,	while	an	increased	training	effort	
may	reduce	the	error	rate,	replacing	either	green	or	yellow	by,	for	ex-
ample,	blue	or	red	ID	tags	may	completely	eliminate	color	misclassi-
fications,	which	would	increase	the	precision	to	98%	in	our	data	set.

A	main	advantage	of	the	Bee Tracker is the large data sets that can 
simultaneously	be	collected	with	relatively	low	time	and	labor	input.	
Direct	 observations	 of	 the	 nesting	 activity	 of	 individually	marked	
bees,	 in	comparison,	are	very	challenging	and	nearly	 impossible	 in	
experimental	setups	with	large	individual	numbers	and	several	sites	
(or	plots/cages),	where	bees	needed	to	be	observed	simultaneously.	
Researchers	therefore	used	videos	for	the	assessments	of	individual	
behavior	in	solitary	bees	(McKinney	&	Park,	2012),	which	are	very	
time-	consuming	to	manually	evaluate.	Despite	this	advantage	of	the	
Bee Tracker,	 the	method	also	has	 some	 limitations.	The	use	of	 the	
software	is	restricted	to	relatively	large	bee	species	that	allow	fixing	
ID	tags	on	the	bees’	thorax.	Furthermore,	the	current	version	of	the	
Bee Tracker	software	was	trained	on	the	model	bee	species	Osmia bi-
cornis.	Although	bee	recognition	and	the	classification	of	movement	
(entering	or	leaving	a	cavity)	seemed	to	work	equally	precise	when	
tested	on	the	closely	related	species	O. cornuta	(Knauer	A.,	personal	
observation),	 further	 training	may	be	 required	when	working	with	
other	solitary	bee	species	 to	obtain	 full	precision	of	 the	software.	
Furthermore,	the	current	version	of	the	software	can	only	analyze	
the	above-	described	24	unique	color–	digit-	based	bee	IDs	and	iden-
tify	cavities	with	a	certain	size	and	shape	that	are	arranged	 in	 the	
nesting	unit	as	described	 (Figure	1).	These	 limits	can,	however,	be	
adapted	by	training	the	software	to	additional	bee	 IDs	 (with	more	
digits	or	colors)	and	different	nesting	units.	 In	field	studies	of	nat-
ural	populations,	where	bees	cannot	be	tagged	after	hatching	(and	

F I G U R E  2 Number	of	events	that	were	detected	correctly	or	
with	an	error	by	the	Bee Tracker	software	in	the	15	videos	that	were	
checked	manually
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before	 the	 release	 into	 flight	cages),	nesting	units	as	 the	ones	de-
scribed	in	Figure	1	with	nest	cavities	open	at	the	top	can	be	used	to	
capture	bees	from	the	cavities	during	inactivity	(e.g.,	during	rain	or	at	
night	when	bees	are	usually	roosting	inside	cavities)	for	tagging.	The	
software	could	therefore	be	used	in	various	experimental	setups	to	
study	the	behavior	of	solitary,	cavity-	nesting	bees	that	can	be	estab-
lished	in	standardized	nesting	units.

4.2  |  Research purpose

The	effect	of	different	stressors	can	vary	between	species	and	de-
pend	on	their	functional	traits	such	as	body	size,	sociality,	or	mode	
of	nesting	 (Brittain	&	Potts,	 2011;	 Sgolastra	 et	 al.,	 2019).	A	 range	
of	 solitary	 bee	 species	 are	 therefore	 increasingly	 studied	 for	 the	
assessment	and	monitoring	of	 stressors	on	pollinators	 (Boff	et	al.,	
2020;	Ganser	et	al.,	2020;	Klaus	et	al.,	2021;	Stuligross	&	Williams,	
2020;	Zurbuchen	et	 al.,	 2010).	The	Bee Tracker	 software	 can	be	 a	
helpful	 tool	 to	efficiently	collect	 robust	data	on	 individual	nesting	
and	foraging	behavior	of	cavity-	nesting	solitary	bees.

The	assessment	of	foraging	behavior	can	be	a	relevant	addition	
to	the	direct	measurement	of	fitness	in	bees.	In	social	bee	species,	
the	number	of	adult	bees,	brood	cells,	and	the	amount	of	food	stores	
(honey	and	pollen)	are	used	as	indicators	of	colony	strength	and	vi-
tality	(Dainat	et	al.,	2020;	Hernandez	et	al.,	2020).	RFID	technology	
has	furthermore	been	used	for	the	monitoring	of	foraging	behavior	
in	social	species	as	it	can	perform	individual	bee	recognition	and	de-
tect	 the	 inbound	and	outbound	movements	of	 tagged	bees	at	 the	
nest	entrance	where	the	antenna	and	reader	are	placed	(Nunes-	Silva	
et	 al.,	 2019).	 With	 this	 technology,	 flight	 activity,	 homing	 ability,	
and	flight	duration	of	social	bees	can	be	studied	(Henry	et	al.,	2012;	
Schneider	et	al.,	2012;	Stanley	et	al.,	2016;	Tenczar	et	al.,	2014).	In	
solitary	bees,	reproductive	success,	measured	by	brood	cell	or	off-
spring	production,	 is	 the	most	 important	proxy	of	 fitness	 (Rundlöf	
et	 al.,	 2015;	 Stuligross	&	Williams,	 2020;	 Zurbuchen	 et	 al.,	 2010).	
The Bee Tracker	software	can	furthermore	be	used	to	measure	re-
productive	 output	 for	 individual	 nesting	 females	 and	 to	 collect	
large	amounts	of	behavioral	data	to	supplement	and	better	under-
stand	measurements	of	reproductive	success	and	fitness	in	solitary,	
cavity-	nesting	bees.

Behavioral	data	can	contribute	to	the	understanding	of	behavior-	
mediated	 impacts	 of	 environmental	 stressors	 on	 reproduction	 of	
solitary	bee	species	(Artz	&	Pitts-	Singer,	2015).	Pesticide	exposure,	
for	example,	can	impair	orientation	and	memory	(Siviter	et	al.,	2018)	
and	cause	a	reduction	in	nest	recognition	or	foraging	activity	(Artz	
&	Pitts-	Singer,	2015;	Franke	et	al.,	2021).	Flight	duration	may	also	
be	 increased	 by	 habitat	 degradation	 or	 food	 competition,	 which	
can	 cause	 increased	 flight	 distances	 to	 food	 sources	 (Gathmann	
&	Tscharntke,	2002).	Pathogens	can	reduce	homing	ability	 in	hon-
eybees	(Li	et	al.,	2013)	or	cause	a	premature	onset	of	foraging	and	
reduce	 the	 total	 activity	 span	 of	 foragers	 (Benaets	 et	 al.,	 2017).	
Overall,	understanding	bees’	foraging	and	flight	activities	can	pro-
vide	valuable	information	for	evaluating	the	impact	of	a	wide	range	

of	 environmental	 stressors	 on	 bees.	 For	 example,	 behavioral	 data	
collected	with	RFID	 contributed	 to	 the	 detection	 of	 sublethal	 ad-
verse	effects	of	neonicotinoids,	which	finally	led	to	the	ban	of	sev-
eral	compounds	from	this	class	of	insecticides	in	the	European	Union	
(Gross,	2013).

5  |  CONCLUSION

The Bee Tracker	software	is	an	efficient	tool	to	collect	large	amounts	
of	data	on	foraging	and	nesting	behavior	of	cavity-	nesting	solitary	
bee	species.	We	hope	it	will	contribute	to	a	more	accurate	and	in-	
depth	study	of	these	behavioral	aspects	and	to	an	increased	consid-
eration	of	solitary	species	for	the	monitoring	of	impacts	of	stressors	
on	bees.	Such	monitoring	is	essential	for	the	protection	of	wild	pol-
linators	and	the	vital	pollination	services	they	provide	to	wild	plants	
and crops.
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