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Abstract  

Soil monitoring programs, such as the Swiss Soil Monitoring Network NABO, typically generate datasets consisting of 
data points separated by few years measured repeatedly at the same ensemble of monitoring sites. For the statistical 
analyses, it is important to know if the errors are correlated in time. However, even in the case of independent errors 
(that are unknown) the model residuals are correlated. This report presents a method using residual analysis to test the 
null hypothesis of independent errors. The method is illustrated for data on the temporal evolution 1990–2014 of 
organic carbon contents for 29 cropland sites. The results indicated no temporal correlation for the assessed data. 

Zusammenfassung  

Bodenmonitoringprogramme, wie die Nationale Bodenbeobachtung NABO, generieren üblicherweise Datensätze mit 
mehreren Datenpunkten pro Standort aus wiederholten Probenahmen, die einige Jahre auseinanderliegen. Für die 
statistischen Auswertungen ist es von Bedeutung, ob die Fehler der verschiedenen Zeitpunkte korreliert sind. Allerdings 
sind die Modellresiduen selbst im Falle unkorrelierter Fehler (die per se unbekannt sind) korreliert. Dieser Bericht zeigt 
wie mit Hilfe von Residuenanalysen die Hypothese, die Fehler seien unabhängig, überprüft werden kann. Die Methode 
wird an Daten zur zeitlichen Entwicklung 1990–2014 von Kohlenstoffgehalten auf 29 Ackerstandorten demonstriert. Für 
die untersuchten Daten fanden wir keine Hinweise auf zeitliche Korrelationen. 

Résumé  

Les programmes de monitoring du sol comme l’Observatoire national des sols NABO génèrent généralement des 
séries de données comprenant plusieurs points de données prélevés sur le même site et à plusieurs années 
d’intervalle. Pour les analyses statistiques, il est important de savoir si les erreurs sont corrélées dans le temps, 
Toutefois, même dans le cas d’erreurs indépendantes (qui ne sont pas connues en soi), les résidus du modèle 
statistique sont corrélés. Ce rapport présente une méthode permettant de tester à l’aide d’analyses résiduelles 
l’hypothèse selon laquelle les erreurs sont indépendantes. La méthode est illustrée par les données de l’évolution des 
teneurs en carbone dans le temps (de 1990 à 2014) sur 29 sites cultivés. Les résultats n’indiquent aucune corrélation 
temporelle pour les données étudiées. 
 

  



 

Introduction 

 

 

 

Agroscope Science  |  No. 43 / 2017 5 

 

1 Introduction  

Data sets generated by environmental monitoring programs strongly differ regarding their temporal resolution. Whereas 
some record their target variables (almost) continuously, e.g. air quality programmes, many others generate data points 
separated by years. The latter setting is typical for soil monitoring programmes, such as the Swiss Soil Monitoring 
Network (NABO; Gubler et al. 2015). NABO operates 110 long-term monitoring sites throughout Switzerland covering 
all relevant land uses. Most sites were sampled for the first time between 1985 and 1989 and re-sampled every five 
years ever since. For each sampling campaign and site, four replicate samples are collected from the top 20 cm of soil 
for chemical analyses. Usually, statistical analyses are based on the mean of the four replicates. Hence, the analysed 
datasets comprise observations from a specific number of sites, each measured at several (typically five to six) almost 
equidistant time points. Such data may be analysed as repeated measures, e.g. by using linear-mixed models or other 
hierarchical approaches. If the errors of the model exhibit temporal correlation (such as serial correlation), we have to 
account for it.  
The errors are the differences between the true values and the fitted ones. However, the true values (and hence the 
errors) are unknown since our data represent only estimates of the true values distorted by various error sources 
(sampling errors, analytical uncertainty L). Therefore, one can only inspect the model residuals that differ from the 
errors with respect to some properties. In particular, even in the case of independent errors, residuals are correlated. 
For simplicity’s sake, we will use a simple linear regression for example. If there is one predictor �� for the response 

variable �� determined for N time points, the model equation is 
 
 �� = 	�	 + �� ∙ 
� + ��         � = �,… ,� (1) 

or, using matrices, 
 

 � = �	� + �						    		�� = � � � ⋯ �

� 
� ⋯ 
�

�        					� = ��	
��

� (2) 

where � and � are column vectors containing the response and the errors, respectively. � represents the so-called 

design matrix. The regression coefficients � are estimated from the data and used to derive the fitted values: 
 

 �� = �	�� (3) 

Then, the residuals are the differences between our observations and the fitted values: 
 

 �� = �	–�� (4) 

In the case of independent errors, their covariance is  
 

 ����� = !	"�  (5) 

where ! is a N x N identity matrix. In contrast, the covariance of the residuals is 
 

 ������ = #!–$%"�						  				$ = ����� &���  (6) 

The residuals are correlated because $ is not a diagonal matrix (and thus the non-diagonal elements of the covariance 

matrix differ from zero). The theoretical correlations of a linear model according Equation 1 including five time points 
are displayed in Figure 1 (see cover graphic for correlations of datasets featuring less/more time points). Most 
remarkable are the negative correlations of the errors of the first vs. the second and the fourth vs. the fifth time point. 
One can demonstrate this phenomenon by drawing randomly five points and then adding a trend line. It is very likely 
that the line passes between the first and the second point producing a positive residual for the first and a negative 
residuals for the second point, or vice versa. The same holds for the fourth and the fifth point. Hence, negative 
correlations are likely to be observed for the first and the second respectively the fourth and fifth point. 
 
In summary, we know in advance that the residuals are correlated, even when the errors are not. Thus, we must 
assess if the residuals are correlated as we would expect under the null hypothesis of independent errors. This report 
presents a method using residual analysis to test whether errors are correlated or not. Data on organic carbon (OC) 
contents determined for NABO monitoring sites are used for illustration. The used methodology as well as the 
theoretical background outlined above was elaborated by Stahel et al. (2014) in the context of previous analyses of 
monitoring data collected by NABO.  
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Figure 1: Theoretical correlation matrix for a first order linear model including five time points. 

2 Methods  

2.1 Data  

We used data on OC contents measured repeatedly at 29 NABO monitoring sites used as cropland (Gubler et al. 
2017). All sites were sampled five times between 1990 and 2014 (NABO sampling campaigns 2 to 6; results of 
campaign 1 were omitted since we assumed that they are biased). Samplings at the individual sites were separated by 
five years. The statistical analyses were based on the mean of four replicates per site and sampling, OC contents were 
log-transformed. 
 

 

Figure 2: Data on organic carbon contents of top 20 cm of 29 cropland sites sampled repeatedly five times from 1990 to 
2014 by the Swiss Soil Monitoring Network NABO.  
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2.2 Residual analyses  

The used method included the steps below. Correlation matrices were calculated by using Spearman’s rank correlation 
method to reduce the impact of outliers.  

0. Remove sites with missing observations (the dataset described above only included monitoring sites with complete 
observations). 

1. Fit a linear regression for every site. The linear model can be written as y(,) = 	β+,( + β,,( ∙ t + ε(,) 	where �/,� 
represents the log of the OC content at site i for time point t, 0+,1 represent the site-specific OC levels, and 0,,1 
allows for an individual slope per site. 

2. Calculate the residuals of the regression (“observed residuals”) and derive the corresponding correlation matrix 
between the different time points (“observed correlation matrix”; in our case a 5 x 5 matrix). 

3. Generate independent residuals by simulating from a t-distribution with 3 degrees of freedom (which was chosen 
based on empirical inspection of data, i.e. by using quantile-quantile plots; alternatively, one could simply 
permutate the residuals obtained in step 2). Fit the model used in step 1 to the simulated data, calculate the 
residuals (“simulated residuals”), and derive the correlation matrix (“simulated correlation matrix”). 

4. Iterate the previous step 1000 times. This ensemble of simulated correlation matrices represent the correlations we 
may expect under the null hypothesis of independent errors. 

5. Calculate the theoretical correlation matrix using the design matrix (c.f. Equation 6). 

6. Compute a p-value for each cell of the correlation matrix as follows: Calculate the absolute deviation of the 
observed correlation from the theoretical correlation and compare with the absolute deviations of the simulated 
correlations. The proportion of simulations with absolute deviations larger than the one of the real data represents 
the p-value.  

7. Compute an overall p-value by using only the correlations at lag 1 (time point 1 vs. 2, 2 vs. 3, etc.). The 
corresponding correlations are squared and summed to derive the test statistic. The test statistic of the real data is 
compared to those of the simulations. The proportion of simulations with test statistics larger than the one of the 
real data represents the p-value. (Hence, at a significance level of 5 %, we reject the null hypothesis of 
independent errors if the test statistic of the real data is more extreme than 95 % of the simulations). 

 

3 Results, Discussion & Conclusion 

The scatter plots of the observed residuals (i.e. the residuals of the real data) indicated negative correlations for 
sampling campaign 2 vs. 3 and campaign 5 vs. 6 (Figure 3).These findings were confirmed by the observed correlation 
matrix (Figure 4), although the correlations were less negative than expected from the theoretical correlation matrix 
(Figure 1). The difference of the observed and the theoretical correlations was most positive for the correlation of 
campaign 2 vs. 3 (Figure 5). In contrast, some correlations at lag 2 were more negative than expected. However, the 
observed deviations were in good agreement with those of the simulated data. The p-values of the individual cells of 
the correlation matrix were considerably larger than the applied significance level of 0.05 (Figure 6). The lowest p-value 
of 0.21 was observed for the correlation of campaign 2 vs. 3. The overall test statistic of the real data was similar to the 
test statistics of the simulated data, the corresponding p-value was 0.81 (Figure 7). Accordingly, the null hypothesis of 
independent errors was not rejected. 
 
In conclusion, the errors of the different sampling campaigns seem not to be correlated for the assessed OC data. 
Temporal correlation might be relevant for shorter time lags, in particular for yearly or even more frequent samplings. 
The presented method may be used (and potentially adapted) for similar datasets.  
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Figure 3: Model residuals observed for OC data. 

 
 
 

 
 

Figure 4: Correlation matrix observed for residuals of OC data. 
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Figure 5: Deviations of the observed correlations (Figure 4) from the theoretical correlations (Figure 1). 

 
 
 

 
 

Figure 6: p-values of the individual cells of the correlation matrix. 
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Figure 7: Overall test statistic based on lag 1 correlations of the real data (red line) compared with test statistics of the 
simulations (histogram) and their 0.95 quantile (green line). 
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