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Summary 

Changes in soil organic carbon (SOC) stocks in Switzerland’s mineral agricultural soils are simulated using RothC, 

the results of which are used for national GHG reporting. A sensitivity analysis of these simulations and of the system 

used to upscale these simulations to the national scale is described in this report. The main aim of the analysis was 

to understand which input or model parameters need to be estimated more precisely or accurately in the future and 

thus where resources need to be prioritised. A Monte Carlo approach was used, varying all parameters 

simultaneously. The input and model parameters were set to vary i. by a fixed amount and ii. according to their 

uncertainty or the variation they are expected to vary by in reality. The latter allowed the importance of parameters 

to be judged, as both model sensitivity and extent of variation of the parameters are considered. The change in SOC 

stocks over 28 years was used as the response variable. Changes in SOC stocks in cropland, in year-round managed 

grassland and in summer pasture areas were investigated separately. Although the results for these three land use 

types differ, a common set of parameters important for all of them was identified (the carbon use efficiency scaling 

factor, the decay rate constants of the humified organic matter and resistant plant matter C pools, initial SOC, 

temperature and precipitation). The variation of the two latter parameters is mainly due to the sometimes large regions 

that are used for the upscaling of simulations to the national scale, rather than uncertainty in the parameter estimates 

themselves. A move to simulating smaller regions, for example raster-based modelling, would therefore improve the 

simulation of SOC changes greatly. The estimate of the former three parameters (all model parameters) will on the 

other hand not be improved with simulations at higher spatial resolution and should be prioritised for future research. 

Lastly, we show that a model parameter associated with topsoil moisture deficit becomes more important in years 

with hot and dry summers; this parameter is likely to be very important for countries with frequent drought and will 

become more important for Switzerland in the future. Though the analysis pertains to the Swiss inventory system, it 

aims to provide information that can be used in other countries or regions, or for the improvement of the RothC model 

in general. 
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1 Introduction 

Soils store more than twice the amount of carbon (C) as the atmosphere and about four times as much as global 

aboveground vegetation (Batjes, 1996; Sanderman et al., 2017). These stocks are dynamic. C is lost from the soil 

predominantly as CO2, meaning changes in soil organic carbon (SOC) are relevant for greenhouse gas (GHG) 

budgets. In agricultural soils, where SOC stocks have often decreased in the past, there is large potential for C-

sequestration (Paustian et al., 2019), meaning monitoring and reporting changes in SOC stocks in these soils is 

needed (Smith et al., 2020). Although simulating SOC stocks or stock changes cannot be a substitute for their 

measurement, it can offer a cost-efficient method – especially for large regions – to estimate SOC changes, also in 

response to changes in management. Additionally, modelling SOC offers the potential to predict future SOC stocks 

or dynamics, considering different management measures and climate, useful for planning or estimating 

sequestration potentials (Lee et al., 2021; Wiesmeier et al., 2014). 

In Switzerland, SOC changes in mineral agricultural soils are simulated using RothC and results based on this are 

used for its annual GHG inventory (FOEN, 2020). An inventory system was developed for this purpose (Wüst-Galley 

et al., 2020). Components of this inventory system include the SOC modelling itself, as well as the upscaling of model 

outputs to the national level, the latter made more challenging by the wide range of management systems and the 

large topographic and climatic variation in the country. A sensitivity analysis of this whole inventory system is 

described in the present report. 

1.1 Modelling SOC changes in Swiss soils 

SOC stock changes in the topsoil (0-30 cm) are simulated for cropland (arable land including leys, ca. 398,000 ha1), 

for year-round managed pastures and meadows (ca. 606,000 ha1, excluding leys) and for pastures and meadows in 

the summer pasture area ('SPA', ca. 466,000 ha, Herzog et al., 2014). Though most of the Swiss agricultural surface 

is grassland, cropland is also important. 

Cropland is concentrated in flatter regions, mostly in the lowlands. For those crops receiving organic amendments 

(OrgAm), inputs as calculated in the inventory system are generally high (1.3 to 2.6 t C ha-1 a-1) and cover crops are 

– in accordance with the ecological requirements for farm subsidies2 – assumed to be used in the rotation if fields 

would otherwise be bare over the winter. Year-round managed grassland occurs also in the flatter lowlands, as well 

as in hilly and lower mountainous regions. A wide range of management intensity occurs, corresponding to a large 

range of OrgAm inputs (from no inputs to an estimated 1.5 t C ha-1 to a-1, excluding leys). The SPA occurs in 

mountainous parts of the country, bounded at higher elevation by unproductive vegetation / land cover. At lower 

elevation it is separated from year-round managed land by specified boundaries and therefore occurs in regions (and 

with climates) distinct from the rest of agriculture. The land is grazed only in the summer months and receives little 

OrgAm only during this period. To incorporate this diversity of management in the inventory system, SOC stocks are 

simulated for 19 crops and 6 different grassland types (one of which refers to the grasslands in the SPA, the other 

five of which encompass year-round managed grassland of varying intensity, Wüst-Galley et al., 2020: pp. 36-40). 

The inventory system uses the RothC model (Coleman et al., 1997; Jenkinson et al., 1990), which simulates the 

dynamics of four soil C pools in response to user-given C inputs from plants and OrgAm (in the inventory system, 

comprising manure and inputs from anaerobic digestion). These C pools decompose at their own rates, using climate- 

and / or clay content dependent first-order kinetics to simulate SOC mineralisation. The model uses a monthly time 

step. 

To upscale the results of the RothC simulations, the country is partitioned into regions (hereafter ‘strata’) which have 

similar climatic and topographic conditions, and clay content (Wüst-Galley et al., 2020: pp. 29-31). Additionally, 25 

different management systems (the different grassland types and individual crops, Wüst-Galley et al., 2020: pp. 29-

31) are considered. The simulations are carried out for all combinations of the regions and management, and the 

simulation outputs are weighted according to the occurrence of the strata-management combination, to obtain 

national level results (Wüst-Galley et al., 2020: pp. 67-68). Though these strata capture some variation in climate 

and topography, their sometimes large size (e.g. one stratum contains 255,000 ha of cropland and another, in the 

                                                      
1 Federal Statistics Office, https://www.pxweb.bfs.admin.ch/pxweb/de/, accessed 17th February 2021; in German only. 
2 Verordnung über die Direktzahlungen an die Landwirtschaft (Direktzahlungsverordnung, DZV); SR 910.13: 
https://www.admin.ch/opc/de/classified-compilation/20130216/index.html; in German, French and Italian. 

https://www.pxweb.bfs.admin.ch/pxweb/de/
https://www.admin.ch/opc/de/classified-compilation/20130216/index.html
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SPA, contains 146,000 ha of grassland) combined with the steep environmental gradients mean there is considerable 

variation within some of them. Likewise, though SOC is simulated for many different management systems, there is 

also variation within these that is not captured by the inventory system. Simulations are run from 1975 to present and 

results reported for the period 1990 to present. 

1.2 Types of sensitivity analysis 

The type of sensitivity analysis carried out is determined in part by the aim of the sensitivity analysis and the 

complexity of the model. Two important aspects are as follows. 

The first aspect concerns whether the parameters are set to vary by a fixed amount (e.g. by ±10 %), or by varying 

amounts. The first option allows a direct comparison of the sensitivity of the model to the parameters and can help 

understand the behaviour of a model in a general context. This method has disadvantages, including the fact that 

non-linear effects of the parameter value on the model outcome can only be determined by varying the input 

parameter’s value around a number of different starting points (Wallach et al., 2019). The second option is that model 

and input parameters can be set to vary depending on the amount of variation or uncertainty encountered in the real 

world (or an estimate thereof). Contrary to the first option, this method allows non-linear relationships between input 

parameter and model outcome to be revealed. Additionally, this method is important if the aim of the sensitivity 

analysis is to understand the importance of parameters for the model, enabling future resources to be prioritised to 

improve the quality of the inputs and thus the inventory system. This is because the importance of different 

parameters depends on i. their influence on the model outcome per se, i.e. the sensitivity, as well as ii. the magnitude 

of their uncertainty or variation ( 

Figure 1). For example, if an input parameter is known to vary considerably but alters the outcome of the simulation 

relatively little (i.e. the model is relatively insensitive to that parameter), expending large amounts of resources on 

that parameter makes little sense; improving its estimate will not improve the outcome of the simulation substantially. 

Conversely, it makes sense to improve the estimate of an input parameter to which the model is very sensitive, 

especially if that parameter is known to vary a lot or if the estimate of it is uncertain. The second option indeed 

combines both these aspects. 

 

  
sensitivity of model 

to parameter 

  low med. high 

variability / 
uncertainty 

low 1 2 3 

med. 2 3 4 

high 3 4 4 

 
Figure 1 The importance of an input or model parameter (paler blue = least important, darker blue = most important) depends 
on it the extent of its variation or uncertainty, as well as the sensitivity of the model to that parameter. 

The second aspect concerns whether or not parameters are varied one at a time, or simultaneously. The first option 

increases the direct comparability of results as only the parameter of interest is varied; interpretation of the results is 

thus much simpler. For example, if a 10 % increase in the value of parameter one causes a 4 % change in the 

outcome or a model and a 10 % increase in the value of parameter two causes an 8 % change in the outcome of the 

same model, it can be stated that the model is twice as sensitive to parameter two as it is to parameter one. A 

disadvantage of this method however is that interactions between input or model parameters are not accounted for. 

The second option involves varying multiple (or generally, all) parameters simultaneously, meaning the multi-

dimensional parameter space is investigated. The main advantage to this method is that interactions between input 
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or model parameters can be accounted for and can be quantified (Wallach et al., 2019). Disadvantages include the 

more complicated interpretation of results, especially if a large number of parameters is tested. 

Within the RothC model, there are interactions between variables as well as non-linear relationships between input 

parameters and the model outcome (Jenkinson et al., 1990). It was therefore decided to carry out a sensitivity 

analysis in which all parameters are varied simultaneously. Furthermore, parameters were allowed to vary by the 

whole range of their expected variation, allowing the importance of parameters to be compared. As the entirety of 

the parameter space is investigated, this method is termed a ‘global’ sensitivity analysis (Wallach et al., 2019). An 

MC approach was used to do carry out the analysis, whereby a number of replicates were run, each replicate 

representing one run of the inventory system (i.e. simulations and upscaling). For each replicate, model and input 

parameter values are randomly picked from pre-determined parameter distributions, rather than being fixed values 

(as would otherwise be the case in a model run). 

1.3 Sources of variation 

The variation associated with a parameter may have two sources. Firstly, the ‘true’ value of a parameter might be 

uncertain, either if there is measurement uncertainty or for example if a database from which data for the model are 

obtained includes only a sample of a population. Secondly, variation occurs because (single) simulations represent 

entire regions or management systems, although there might be (or almost certainly is) variation within a 

management system or across a region. For example, for a given region, the mean monthly temperature is 

represented by a single value, although in reality, temperature will vary across the region. This is particularly relevant 

for the inventory system investigated here, as simulations represent sometimes large regions and Switzerland has 

very variable topography. 

Both sources of variation are important for a sensitivity analysis and therefore both were considered. Where several 

sources of variation could be identified, the largest one was accounted for. 

1.4 Aims and Scope  

A sensitivity analysis forms part of good practice for model application and is especially important if a model is used 

outside of the conditions for which it was originally developed (Smith and Smith, 2007). The general question of a 

sensitivity analysis is what is the sensitivity of the outcome of the simulations (e.g. SOC stock changes) to changes 

in the inputs? The main aim of the sensitivity analysis described here was to identify those inputs most important for 

the Swiss inventory system and thus those that need to be estimated with more precision, or whose accuracy needs 

to be ascertained. Understanding this in turn helps to prioritise resources for future work. Though the analysis pertains 

to the Swiss inventory system, it is aimed to provide information that can be used for simulating SOC for other 

countries or regions, or for the improvement of the RothC model in general. 
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2 Methods 

2.1 Overview 

An MC approach was used to estimate the sensitivity of the inventory system to the input and model parameters. 

Both model and input parameters were varied according to the amount of variation associated with them (either due 

to uncertainty in the parameter estimate or due to spatial variation not represented in the model), meaning that 

secondly, the importance of the parameters could also be determined. Within RothC, SOC mineralisation rates are 

influenced by several parameters (so-called decomposition rate constants and rate modifying factors), some of which 

interact with one another. For this reason, all parameters were varied simultaneously. 

2.2 Parameters 

Three groups of parameters were varied in the sensitivity analysis, namely i) dynamic input parameters that vary 

over time e.g. meteorological information, plant C inputs; ii) static input parameters that are defined only once e.g. 

initial SOC; and iii) model parameters e.g. decay rate constants. The list of parameters included is given in Table 1.  

 

 



Modelling SOC changes with RothC: Sensitivity analysis 

 

 

Agroscope Science | No. 113 / 2021 9 

 

Table 1 List of input and model parameters included in the sensitivity analysis; parameters are classified as either static or dynamic (i.e. changing each month) input 

parameters, or as model parameters (always static); all parameters used in main Monte Carlo analysis, unless otherwise stated (see section 2.5 for details); CUE = 

carbon use efficiency. 

Parameter  Abbreviation Parameter type Brief description 

Temperature  Dynamic input  Monthly average temperature of each stratum (°C) 

Precipitation  Dynamic input  Monthly summed precipitation of each stratum (mm) 

Evapotranspiration  Dynamic input Monthly summed evapotranspiration of each stratum (mm) 

Plant-C inputs PlantC Dynamic input The quantity of plant-C inputs including above- and below-ground inputs, as well as root exudates (t C ha-1 a-1) 

Organic amendments inputs  OrgAm Dynamic input The quantity of C from organic amendments (OrgAms) that is applied to agricultural surfaces (t C ha-1 a-1); 
calculated for five OrgAm types: Stacked manure, slurry, poultry waste, deep litter and fresh manure 

Herd sizes  Dynamic input Number of animals; used to estimate the parameter ‘OrgAm’ * 

OrgAm-C excretion rates  Dynamic input Rate of C excretion of animals (t C animal-1 a-1); used to estimate the parameter ‘OrgAm’ * 

Straw production  Dynamic input Production rate of straw (t C ha-1 a-1); used to estimate the parameter ‘OrgAm’ * 

OrgAm-C loss during storage  Static input Loss of OrgAm-C due to storage (%); used to estimate the parameter ‘OrgAm’ * 

Duration of OrgAm storage  Static input Typical duration of OrgAm storage (years); used to estimate the parameter ‘OrgAm-C loss during storage’ * 

Rate of OrgAm-C loss  Static input Rate of C loss as a function of time (t C a-1); used to estimate the parameter ‘OrgAm-C loss during storage’ * 

Initial SOC stocks Initial TOC Static input Total organic C (TOC) stocks (t C ha-1 a-1) at start of simulation (1975) 

Clay content  Static input Soil clay content (%) 

Timing of C inputs  Static input Timing of C inputs from OrgAm and plants (month of C inputs) 

Initial HUM pool HUM pool Model Relative size of the humified organic matter (HUM) pool at start of simulation (1975) 

Initial IOM pool IOM pool Model Relative size of the inert organic matter (IOM) pool at start of simulation (1975) 

Initial RPM pool RPM pool Model Relative size of the resistant plant material (RPM) pool at start of simulation (1975) 

BIO decay rate constant kBIO Model Decomposition rate constant of the microbial biomass (BIO) pool (a-1) 

DPM decay rate constant kDPM Model  Decomposition rate constant of the decomposable plant material (DPM) pool (a-1) 

HUM decay rate constant kHUM Model Decomposition rate constant of the HUM pool (a-1) 

RPM decay rate constant kRPM Model Decomposition rate constant of the RPM pool (a-1) 

DPM / RPM ratio DPM/RPM Model Proportion of incoming plant matter going to the DPM versus RPM pool 

Minimum beta value TSMD-b Model Minimum value that the beta value can take (under conditions of topsoil moisture deficit, TSMD) 

CUE scaling factor CUE Model A scaling factor that relates clay content to the CO2 / (BIO+HUM) ratio 

HUM pool proportion of OrgAm 
inputs 

OrgAm-HUM Model Proportion of incoming OrgAm-C going to the HUM pool 

*  Not used in main MC analysis
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2.3 Extent of variation 

The amount of variation associated with each input or model parameter was estimated, based either on data or from 

literature sources. The sources are listed in the following text and the parameters relevant for establishing the 

probability distribution functions (PDFs, typically the mean and coefficient of variation, CV [%]) are given in Table 2. 

Details on the resulting parameter distributions given in Appendix A. 

The meteorological data sets used in this project are MeteoSwiss Grid-data products, based on networks of 

meteorological stations (temperature and precipitation) or satellite information (surface incoming shortwave radiation, 

for calculation of evapotranspiration). The three data sets are described in more detail in MeteoSwiss (2013); 

MeteoSwiss (2017); MeteoSwiss (2018) and their implementation in the Swiss inventory system in Wüst-Galley et 

al. (2020, pg. 32). For temperature and evapotranspiration, the basic data are considered high quality. For 

precipitation there is systematic under-estimation in rain gauge measurements, but this affects times of the year 

and / or regions for which an underestimate of precipitation would alter the outcome of the simulation very little, if at 

all (Wüst-Galley et al., 2020, pg. 75). Uncertainty from the basic data sets was therefore not considered in the 

sensitivity analysis. A much greater source of variation however is that due to the use of strata for the simulations: 

Although the strata were established to be representative of regions of similar meteorological conditions, they are 

nonetheless sometimes large and cover large topographical gradients. The variation of the three meteorological 

parameters was estimated by inspecting the gridded data for the relevant strata, for the years 1990, 2000 and 2010. 

For each year, stratum and land use type, the CV of each parameter was calculated. Per land use type, variation 

was similar between the strata and between the three years, meaning constant CVs could be used. For temperature, 

the low temperatures in the winter led to extremely high CV values, although variation in the winter months is, in 

absolute terms, similar to that in the summer months; the standard deviation was therefore used. 

Plant C inputs are calculated as a function of yield, C allocation within the plant and the proportion of the plant that 

remains in the field (both above- and below-ground). Estimates of the variation for each of these parameters could 

not be obtained. We expect variation in crop yields across the country to be one of the major sources of uncertainty 

in plant C inputs in general, because regions for which yield estimates exist – individual cantons – cover large 

topographic and climatic gradients across the country. The variation in yields was therefore used to represent the 

variation in total plant inputs. Crop yields for 13 crops in the main 10 to 14 crop-producing cantons in Switzerland 

were inspected, for the years 1991, 1995, 2000, 2005, 2010 and 2015 (data from the Agristat reports of the SFU3). 

For each year and crop, the CV of yields across the cantons was calculated. With the exception of summer crops in 

2015 – an unusually dry and hot summer – and of silage corn (high variation across the years), yield variation was 

stable for each crop across the years considered. The mean CV of each crop was used to determine the variation in 

total plant C inputs, per crop. 

The variation in the quantity of C inputs through organic amendments (OrgAm) incorporated uncertainty in herd size, 

OrgAm-C excretion rate, straw production and OrgAm-C loss during storage. It was calculated for five OrgAm types 

(Table 1), estimated using an MC analysis. Uncertainty in herd sizes was estimated by Bretscher and Leifeld (2008) 

and includes uncertainty in the counts themselves as well as seasonal variation (counts are given annually, but the 

herd size varies throughout the year). Uncertainty in OrgAm-C excretion rate was estimated by Bretscher and 

Leifeld (2008), based on Minonzio et al. (1998). Uncertainty in straw production was based on the average yield 

variation of small-grain cereals, calculated using regional (cantonal) yield data from 1991, 1995, 2000, 2005, 2010 

and 2015 (Agristat annual reports3 from the Swiss Farmers’ Union). The variation in OrgAm-C loss due to storage 

(for each type of OrgAm) was itself estimated using an MC analysis, incorporating variation in the rate of OrgAm-C 

loss and in the duration of OrgAm storage. Information regarding the variation in the duration of OrgAm storage, 

for all manure types of OrgAm except fresh manure, was estimated using guidelines of crop fertilisation and OrgAm 

storage (Aeby et al., 1995; Flisch et al., 2009; Kupper et al., 2013; Sägesser and Weber, 1992), assuming OrgAm is 

produced at a constant rate throughout the year. For fresh manure, the duration of time during which CO2 was emitted 

from dung patches was obtained from Pecenka and Lundgren (2018) and Penttilä et al. (2013). Variation in the rate 

of OrgAm-C loss during storage was obtained from published experiments in the temperate zone, where OrgAm-C 

                                                      
3 Annual reports available from: https://www.sbv-usp.ch/de/services/agristat-statistik-der-schweizer-landwirtschaft/statistische-erhebungen-und-
schaetzungen-ses/; in German and French. 

https://www.sbv-usp.ch/de/services/agristat-statistik-der-schweizer-landwirtschaft/statistische-erhebungen-und-schaetzungen-ses/
https://www.sbv-usp.ch/de/services/agristat-statistik-der-schweizer-landwirtschaft/statistische-erhebungen-und-schaetzungen-ses/
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content had been measured prior to and following OrgAm storage (Wüst-Galley et al., 2020, pg. 43, see references 

therein). The results from these studies were combined, allowing – for each OrgAm-C type – a statistical model 

describing OrgAm-C loss as a function of storage duration to be built. The standard error of each of the two 

coefficients (intercept and the multiplier) was used to determine the variation in the relationship between OrgAm-C 

loss and storage duration, for each OrgAm-C type. 

Initial TOC was calculated as a function of stone content, soil depth and C concentration, the latter of which is a 

function of clay content and, for grassland, also elevation (Leifeld et al., 2005). The uncertainty of the calculation of 

initial TOC is higher than the spatial variation associated with this parameter, therefore the former was considered in 

this analysis. The standard errors of the parameter estimates from the statistical models were used to quantify the 

uncertainty.  

The importance of clay content for the inventory system was estimated by comparing SOC stock changes for 

simulations run for three clay classes. For cropland and year-round managed grassland, these were 10, 20 and 35 %. 

Ca. 90 % of cropland and ca. 80 % of year-round managed grassland occurs on soils within this clay content range 

(calculated from FSO 2000 and the Swiss land use statistics4). For the SPA, the clay classes considered were 5, 10 

and 27 %. Ca. 75 % of grassland in the SPA is estimated to occur in this clay content range. 

Variation in the timing of C inputs (both OrgAm and plant inputs) was set to between one month prior to or later 

than the month used in the main analysis. 

In the inventory system, the initial pool sizes are determined by SOC stocks and clay content (Wüst-Galley et al., 

2020: pp.59-61). The variation in the proportion of the initial C in the HUM, RPM and IOM pools (see Table 1 for 

meaning of these terms) was determined by inspecting the variation in these three pools across all strata and clay 

classes. The variation considered is therefore representative of variation throughout the country, but does not include 

possible variation due to error in their estimate. The BIO pool was assumed not to vary meaning the model’s 

sensitivity to it was not tested. This is consistent with other sensitivity analyses (Janik et al., 2002) and with the fact 

that the BIO pool has little influence on the model outcome. The initial DPM pool was assumed to be zero, as is 

carried out in the main analysis (Wüst-Galley et al., 2020). 

The estimates of variation (CV) for the decay rate constants kDPM, kBIO, kRPM and kHUM (see Table 1) were 

adopted from Janik et al. (2002), as no further information was found. 

Little information was found regarding the variation of the allocation of OrgAm-C and plant C inputs to the DPM and 

RPM pools (DPM / RPM ratio). The default DPM / RPM ratio for improved grasslands is 1.44 (Jenkinson et al., 1991). 

For unimproved grasslands and savannas a DPM / RPM ratio of 0.67 is recommended (Coleman and Jenkinson, 

2014). It was assumed that this is the minimum DPM / RPM ratio for plant C inputs in the Swiss agricultural system, 

representing a 0.01 percentile. 

The TSMD-b value in RothC – relevant under periods of topsoil moisture deficit – is 0.2, meaning that under strong 

topsoil moisture deficit, C mineralisation is reduced to 20 %. Variation around this value was derived from Paul et al. 

(2003), using relative N mineralisation rates as a proxy for relative C mineralisation rates (Falloon et al., 2011). 

In RothC, the relationship between clay and C-use efficiency (CUE) is altered by the CUE scaling factor. The default 

scaling factor is 1.67, corresponding to a CUE (C going to the HUM and BIO pools divided by C going to HUM and 

BIO pools and CO2) in Rothamsted of ca. 22 %. Expected variation in the CUE scaling factor was obtained from 

Sinsabaugh et al. (2013) and Sinsabaugh et al. (2017), considering grassland and cropland sites with similar mean 

annual temperature and precipitation as Switzerland, yielding a CUE range of circa 10 % to 45 %. Assuming this 

range represents the 95 % of variation, these values were used to construct the PDF of the CUE scaling factor 

corresponding to these CUE values. 

The default proportion of OrgAm going to the HUM pool (OrgAm-HUM) is 2 %. The dominant OrgAm considered in 

the inventory system of Swiss SOC is farmyard manure (> 96 % for the period 2015 to 2019, with other inputs being 

from anaerobic digestion). OrgAm-HUM values for farmyard manure (only) were obtained from Peltre et al. (2012) 

and used to set the limits of the PDF. A log normal distribution was used, to ensure the median value of the PDF 

corresponds to the default value of 2 %. 

 

                                                      
4 https://www.bfs.admin.ch/bfs/de/home/statistiken/raum-umwelt/nomenklaturen/arealstatistik.html; in German and French. 

https://www.bfs.admin.ch/bfs/de/home/statistiken/raum-umwelt/nomenklaturen/arealstatistik.html
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Table 2 The properties of the probability distribution functions (PDFs) used to describe the variation of parameters, namely the mean and the coefficient of variance 

(CV, in %) and the type of PDF used; units of the mean are the same as the units of the parameter; ‘v’ indicates that the value varies (either per crop / grassland 

category, per stratum or per month) and absolute values are therefore not given; parameter names, where abbreviated, are given in Table 1. 

Parameter mean CV (%) Distribution of PDF Comment 

Temperature (°C)     

Cropland v 1.4 Truncated normal Values given are standard deviations, not CV (see text for details). 

Year-round grassland  v 1.7 Truncated normal 

Grassland in the SPA v 2.9 Truncated normal 

Precipitation (mm)     

Cropland v 26 Truncated normal  

Year-round grassland  v 24 Truncated normal  

Grassland in the SPA v 43 Truncated normal  

Evapotranspiration (mm)     

Cropland v 8.3 Truncated normal  

Year-round grassland  v 7.3 Truncated normal  

Grassland in the SPA v 9.8 Truncated normal  

Plant-C inputs (t C ha-1)     

Cropland v 8.4 Truncated normal CV values here are averages of different crops or grassland categories. See Appendix A for 
individual values. Year-round grassland  v 8.3 Truncated normal 

Grassland in the SPA v 8.3 Truncated normal 

OrgAm-C inputs (t C ha-1)     

Cropland v 8.6 Truncated normal CV values are averages of different crops or grassland categories. See Appendix A for 
individual values. 

Year-round grassland  v 9.2 Truncated normal 

Grassland in the SPA v 9.3 Truncated normal 

Herd sizes v 6.0 Normal For cattle 

 v 6.5 Normal For other animal groups 

C excretion rates (t C animal-1 a-1) v -16 to +12 Normal  

Straw production (t C a-1) v 6.7 Normal  

OrgAm-C loss during storage (%)    Includes the variation of the duration of OrgAm storage (below) and rate of OrgAm-C loss (not 
shown in table) Stacked manure 27.5 44.6 Truncated normal 

Slurry 10.6 51.4 Truncated normal 

Poultry waste 30.5 42.9 Truncated normal 

Deep litter 30.5 45.4 Truncated normal 

Fresh 21.5 45.9 Truncated normal 

Duration of OrgAm storage 
(years) 

    

Stacked manure n/a n/a Trapezoid min = 0, mode 1 = 0.04, mode 2 = 0.25, max = 0.33 

Slurry 0.076 25 Log normal Median is given instead of the mean; CV refers to the CV of the log distribution 
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Parameter mean CV (%) Distribution of PDF Comment 

Poultry waste n/a n/a Trapezoid min = 0, mode 1 = 0.08, mode 2 = 0.25, max = 0.33 

Deep litter n/a n/a Trapezoid min = 0, mode 1 = 0.04, mode 2 = 0.25, max = 0.33 

Fresh 1.3 11 Normal  

Initial TOC (t C ha-1, 0-30 cm)    

Cropland 49.1 13.4 Truncated normal The mean values are averages across different strata. See Appendix A for individual values. 

Year-round grassland  61.5 22.4 Truncated normal 

SPA 49.5 22.4 Truncated normal 

Clay content (%) n/a n/a n/a Discrete values were used; for cropland and year-round managed grassland: 10, 20 and 35 %; 
for SPA: 5, 10 and 27 % 

Timing of C inputs n/a n/a n/a C inputs (from plants or OrgAms) were added either 1) one month earlier than, or 2) at the 
same time as, or 3) one month later than the month the C inputs are typically applied.  

HUM pool (proportion) 0.767 1.1 Normal  

IOM pool (proportion) 0.085 3.2 Normal  

RPM pool (proportion) 0.131 8.0 Normal  

kBIO (a-1) 0.66 20 Truncated normal  

kDPM (a-1) 10.02 20 Truncated normal  

kHUM (a-1) 0.02 30 Truncated normal  

kRPM (a-1) 0.3 30 Truncated normal  

DPM / RPM ratio 1.44 21 Normal  

TSMD-b 0.425 17.6 Normal  

CUE scaling factor 1.67 19.4 Normal  

OrgAm-HUM (proportion) 0.02 24.4 Log normal Median is given instead of the mean; CV refers to the CV of the log distribution 

n/a = not applicable, see comments 
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2.4 Extent of analysis 

The SOC inventory system as implemented for the Swiss GHG inventory is extensive, including 24 strata, 19 crops 

and 6 grassland types and 10 clay classes, resulting in a total of 6,000 combinations and covering over 99 % of 

agricultural land in the country. For the sensitivity analysis, only the most important strata / crop or grassland / clay 

combinations were considered, as shown in Table 3. 

Table 3 The strata / crop or grassland / clay class combinations considered in the sensitivity analysis; meanings of 

the two-letter abbreviations of the crop and grassland types are given in Appendix B. 

Land use Region Clay content 
Crops or grassland types 
considered 

Number of 
combinations 

% of that land 
use surface 
represented  

Cropland The Swiss central 
plateau 
(stratum A1_F2*) 

10, 20 and 35 % 10 out of 20 (BA, GM, MA, 
PO, RA, SB, SB, SC, TR, 
VE, WH) 

30 46 

Grassland: 
year-round 
management 

The central plateau 
and hilly regions in 
the Jura and pre-Alps 
(strata A1_F2, A3_F3 
and A3_F1*) 

10, 20 and 35 % 5 out of 5 (EM, EP, IM, IP, 
LM) 

45 41 

Grassland: 
Summer 
pasture area 
(SPA) 

SPA in the drier and 
wetter Alps 
(strata A4_F4_C and 
A4_F4_W*) 

5, 10 and 27 % 1 out of 1 (SU) 6 40 

* Codes refer to strata as defined in Wüst-Galley et al. (2020: pp. 28-31) 

2.5 MC analysis 

Three MC analyses were used. In each MC analysis, each of the (relevant) parameters was varied simultaneously. 

The first analysis estimated the uncertainty associated with OrgAm-C loss during storage. This was calculated as a 

function of the storage duration, as described in Wüst-Galley et al. (2020, pg. 43), using a separate function for each 

of the OrgAm types (stacked manure, slurry, poultry waste, deep litter and fresh manure). The output of this MC 

analysis (five PDFs of OrgAm-C storage loss, one for each OrgAm type) was used as one of several input parameters 

for the second MC analysis, where the uncertainty associated with OrgAm-C application (t C ha-1 a-1) was calculated. 

The third (main) MC analysis estimated the uncertainty of annual SOC stock changes based on RothC simulations, 

using the output of the second MC analysis as one of several input parameters. Each analysis was run for 3,000 

replicates. The second analysis was carried out in Excel. The first and third analyses were carried out in R (R Core 

Team, 2014) and simulations were run from 1975 to 2017. 

2.6 Calculation of SOC stock changes 

The output of the inventory system was the SOC stock change between 1990 and 2017. This was calculated as the 

SOC stock (= average over 12 months) of 2017 minus the SOC stock of 1990, resulting in an SOC change over 28 

years. The base year 1990 was chosen because it corresponds to the base year of the calculations as submitted for 

the GHG inventory (FOEN, 2020) and because the quality of some of the input data is lower for years prior to 1990 

(Wüst-Galley et al., 2020). 

2.7 Reported statistics 

Three assessments were calculated to summarise the results. 

Firstly, the range in SOC stock changes associated with a ±10 % change in each input or model parameter was 

calculated, based on a linear or additive model. The range in SOC changes was calculated as the maximum predicted 

SOC stock change minus minimum predicted SOC stock change. This index indicates the sensitivity of the inventory 

system to each parameter and is independent of the total (expected) variation or uncertainty in parameters. 
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Secondly, the range in SOC changes was calculated, as above, but this time considering SOC changes associated 

with the total variation of each input or model parameter. This index indicates the importance of each parameter for 

the inventory system, as it combines the sensitivity of the inventory system to change in each parameter, accounting 

for the amount of variation or uncertainty associated with each parameter. For parameters whose distributions were 

assumed to follow a truncated normal distribution, the full extent of the variation in that parameter was used for 

calculations of the change in SOC. For parameters whose distributions were assumed to follow a normal or log 

normal distribution, 95 % of the variation was used for calculations. 

Lastly, the r2 of a linear (or where a better fit was obtained, additive) model relating the SOC change to each model 

parameter was calculated. In addition the Pearson correlation coefficient was calculated for parameters linearly 

related to the SOC change. 
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3 Results 

Results of the main MC analysis are shown for cropland (Table 4 and Figure 2), for year-round managed grassland 

(Table 5 and Figure 3) and for the SPA (Table 6 and Figure 4) in this section, as summary statistics; dot plots showing 

the results of individual replicates are given in the appendices (section 8, cropland; section 9, year-round managed 

grassland and section 10, SPA). All results pertain to SOC stock changes from 1990 to 2017. Unless otherwise 

stated, the parameter variation refers to the total parameter variation (not the ±10 % fixed variation). 

The tornado plots indicate the change in SOC stocks associated with an increase (= SOC change associated with 

maximum parameter value minus SOC change associated with median parameter value) and with a decrease of 

each parameter (= SOC change associated with median parameter value minus SOC change associated with 

minimum parameter value), separately. Where the SOC change is linearly related to variation in a parameter, the 

bars are symmetrical and the total change in SOC associated with variation in that parameter equals their sum. In 

the case of a non-linear relationship between a parameter and SOC change, the changes in SOC do not necessarily 

sum to the total SOC change; total SOC changes associated with all parameters are however given in Table 4 to 

Table 6. SOC changes in the tornado plots are always displayed as positive and are not indicative of direction of 

SOC change; whether an increase in a parameter leads to an increase or decrease in SOC stocks can be seen in 

the appendices (section 8, cropland; section 9, year-round managed grassland and section 10, SPA) and – for 

parameters that have a linear relationship with SOC change – in Table 4 to Table 6, as the sign of the correlation 

coefficient. 

For each land use type, parameters vary greatly in their importance for the simulation of SOC changes. This variation 

is most pronounced in the SPA, where variation in the most important parameter caused a change in SOC of 

>20 t C ha-1 a-1 and variation in the least important parameters, almost no change in SOC. 

There is a set of important parameters common to all three land use types (Table 7). More specifically, the CUE 

scaling factor, kHUM, kRPM, precipitation, temperature and initial TOC, are the six most important parameters in 

year-round managed grassland and SPA, and are among the seven most important parameters for cropland. 

Likewise, there is a set of parameters that is consistently unimportant: The initial pool distribution of the IOM, HUM 

and RPM pools, and the timing of C inputs (Table 7). 

A comparison was made between the SOC changes assuming the total variation in each parameter (~importance) 

and the SOC changes assuming only 10 % variation in each parameter (~sensitivity). For cropland (Figure 5) there 

is general congruence between these two indices, though there are three parameters, the CUE scaling factor, 

evapotranspiration and initial TOC, with lower importance than expected based on the sensitivity index, as well as 

one parameter, kHUM, that is more important than would be expected. There is also general congruence between 

the two indices for year-round managed grassland (Figure 6), again except for three parameters, plantC, temperature 

and initial TOC, that have lower importance than expected based on the sensitivity index, as well as one parameter, 

kHUM, that is more important than would be expected. For SPA (Figure 7) there are two parameters, initial TOC and 

plantC, that have a lower importance than would be expected based on the sensitivity index and one parameter, 

precipitation, that is more important than expected. 

The parameter TSMD-b was of low importance for SOC changes across the 28 years (Table 7 and Figure 8a). 

Inspection of individual year-pairs however indicate that although this is generally true, for year-pairs in which one 

year was particularly hot and dry (e.g. 2017-2018, with 2018 being hot and dry), the parameter is important (Figure 

8c). The range in annual SOC changes (2017-2018) for the drier replicates was 0.47 t C ha-1a-1.   
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Table 4 Result metrics for cropland; Corr = Pearson correlation coefficient; r2 = adjusted r2 from linear or additive 

model, ‘Range ΔSOC’ = the range of SOC stock changes over 27 years predicted using a general linear or additive 

model (see main text), considering the whole variation in that parameter, and ‘Range ΔSOC 10 %’ = as for ‘Range 

ΔSOC’, but considering a constant (±10 %) variation in each parameter. 

Parameter Corr r2 Range ΔSOC (t C ha-1) Range ΔSOC (t C ha-1) 10 % 

Temperature -0.359 0.129 6.050 1.386 

Precipitation * 0.067 4.422 1.137 

Evapotranspiration 0.091 0.008 1.527 1.385 

Plant-C inputs 0.096 0.009 1.628 1.111 

OrgAm-C inputs 0.056 0.003 0.955 0.787 

Initial TOC -0.284 0.081 4.882 1.950 

Clay content ** ** 1.604 0.681 

Timing of C inputs ** ** 0.172 0.172 

Initial HUM pool size 0.023 <0.001 0.370 0.688 

Initial IOM pool size 0.014 <0.001 0.230 0.301 

Initial RPM pool size -0.026 <0.001 0.419 0.362 

kBIO  0.005 <0.001 0.094 0.509 

kDPM -0.003 <0.001 0.047 0.142 

kHUM -0.612 0.374 11.440 1.663 

kRPM * 0.007 1.780 0.493 

DPM/RPM ratio -0.030 <0.001 0.470 0.149 

TSMD-b -0.082 0.007 1.321 0.237 

CUE scaling factor * 0.268 7.905 2.042 

OrgAm-HUM 0.187 0.035 2.965 -0.502 

*Non-linear relationship between parameter and SOC stock change therefore index not calculated 

**Parameter takes discrete values therefore index not calculated   
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Table 5 Result metrics for year-round managed grassland; Corr = Pearson correlation coefficient; r2 = adjusted r2 

from linear or additive model, ‘Range ΔSOC’ = the range of SOC stock changes over 27 years predicted using a 

general linear or additive model (see main text), considering the whole variation in that parameter, and ‘Range 

ΔSOC 10 %’ = as for ‘Range ΔSOC’, but considering a constant (±10 %) variation in each parameter. 

Parameter Corr r2 Range SOC (t C ha-1) Range SOC (t C ha-1) 10 % 

Temperature -0.410 0.168 7.605 2.018 

Precipitation ** 0.013 2.838 0.650 

Evapotranspiration 0.026 <0.001 0.492 0.284 

Plant-C inputs 0.110 0.012 2.086 1.375 

OrgAm-C inputs 0.021 <0.001 0.406 0.201 

Initial TOC -0.505 0.255 9.655 2.490 

Clay content * * 0.623 0.184 

Timing of C inputs * * 0.524 0.524 

Initial HUM pool size 0.022 <0.001 0.378 0.738 

Initial IOM pool size -0.006 <0.001 0.101 0.343 

Initial RPM pool size -0.020 <0.001 0.347 0.000 

kBIO  0.032 <0.001 0.651 0.940 

kDPM 0.009 <0.001 0.192 0.459 

kHUM -0.564 0.318 11.731 1.807 

kRPM ** 0.011 3.561 0.379 

DPM/RPM ratio -0.033 0.001 0.587 0.703 

TSMD-b -0.040 0.002 0.720 0.487 

CUE scaling factor -0.395 0.156 6.937 1.113 

OrgAm-HUM 0.091 0.008 1.603 0.584 

*Non-linear relationship between parameter and SOC stock change therefore index not calculated 

**Parameter takes discrete values therefore index not calculated 
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Table 6 Result metrics for grassland in the SPA; Corr = Pearson correlation coefficient; r2 = adjusted r2 from linear 

or additive model, ‘Range ΔSOC’ = the range of SOC stock changes over 27 years predicted using a general linear 

or additive model (see main text), considering the whole variation in that parameter, and ‘Range ΔSOC 10 %’ = as 

for ‘Range ΔSOC’, but considering a constant (±10 %) variation in each parameter. 

Parameter Corr r2 Range ΔSOC (t C ha-1) Range ΔSOC (t C ha-1) 10 % 

Temperature ** 0.618 20.179 2.573 

Precipitation ** 0.084 8.749 0.277 

Evapotranspiration 0.029 <0.001 0.751 0.772 

Plant-C inputs 0.162 0.026 4.256 3.006 

OrgAm-C inputs 0.010 <0.001 0.273 0.652 

Initial TOC -0.205 0.042 5.443 2.826 

Clay content * * 3.786 1.452 

Timing of C inputs * * 0.426 0.426 

Initial HUM pool size 0.011 <0.001 0.274 0.536 

Initial IOM pool size 0.004 <0.001 0.098 0.029 

Initial RPM pool size -0.013 <0.001 0.309 0.000 

kBIO  -0.001 <0.001 0.037 1.186 

kDPM 0.008 <0.001 0.191 0.463 

kHUM -0.176 0.031 5.070 0.544 

kRPM ** 0.059 7.757 1.511 

DPM/RPM ratio -0.089 0.008 2.180 0.526 

TSMD-b -0.044 0.002 1.102 0.231 

CUE scaling factor -0.201 0.040 4.904 0.786 

OrgAm-HUM -0.016 <0.001 0.401 0.288 

*Non-linear relationship between parameter and SOC stock change therefore index not calculated 

**Parameter takes discrete values therefore index not calculated 
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Figure 2 Tornado plot for cropland, showing the range of SOC stock changes resulting from an increase (dark green bars, right-
hand side) or decrease (pale green, left-hand side) in each parameter; sign of SOC change is not indicative of direction of SOC 
change (see main text); CUE = CUE scaling factor; Temp. = temperature: ppN = precipitation, ET = evapotranspiration, TOC = 

initial TOC; see Table 1 for meaning of other abbreviated parameter names. 

 

Figure 3 Tornado plot for year-round managed grassland, showing the range of SOC stock changes resulting from an increase 
(dark green bars, right-hand side) or decrease (pale green, left-hand side) in each parameter; sign of SOC change is not 
indicative of direction of SOC change (see main text); CUE = CUE scaling factor; Temp. = temperature: ppN = precipitation, ET 
= evapotranspiration, TOC = initial TOC; see Table 1 for meaning of other abbreviated parameter name; see Table 1 for 
meaning of abbreviated parameter names. 
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Figure 4 Tornado plot for grassland in the SPA, showing the range of SOC stock changes resulting from an increase (dark 
green bars, right-hand side) or decrease (pale green, left-hand side) in each parameter; sign of SOC change is not indicative of 
direction of SOC change (see main text); CUE = CUE scaling factor; Temp. = temperature: ppN = precipitation, ET = 
evapotranspiration, TOC = initial TOC; see Table 1 for meaning of other abbreviated parameter names. 

Table 7 The importance ranking of the parameters for each land use type, based on the range of SOC stock 

changes associated with each parameter; rank = 1 indicates the most important parameter and rank = 19 indicates 

the least important parameter; grey shading = the set of most important parameters as described in text. 

 Importance ranking 

Parameter Cropland Year-round 
managed grassland 

Grassland in the 
SPA 

Temperature 3 3 1 

Precipitation 5 6 2 

Evapotranspiration 10 14 11 

Plant-C inputs 8 7 7 

OrgAm-C inputs 12 15 16 

Initial TOC 4 2 4 

Clay content 9 11 8 

Timing of C inputs 17 13 12 

Initial HUM pool size 15 16 15 

Initial IOM pool size 16 19 18 

Initial RPM pool size 14 17 14 

kBIO  18 10 19 

kDPM 19 18 17 

kHUM 1 1 5 

kRPM 7 5 3 

DPM/RPM ratio 13 12 9 

TSMD-b 11 9 10 

CUE scaling factor 2 4 6 

OrgAm-HUM 6 8 13 
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Figure 5 Comparison of sensitivity and importance for cropland; sensitivity represented by the range of SOC changes 
associated with a standard (±10 %) change in each parameter (y-axis) and importance represented by the range of SOC 
changes associated with total change in each parameter (x-axis); labelled parameters are discussed in the main text; ET = 

evapotranspiration, TOC = initial TOC, CUE = CUE scaling factor, kHUM = decay rate constant of the HUM pool. 

 
 
 

Figure 6 Comparison of sensitivity and importance for year-round managed grassland; sensitivity represented by the range of 
SOC changes associated with a standard (±10 %) change in each parameter (y-axis) and importance represented by the range 
of SOC changes associated with total change in each parameter (x-axis); labelled parameters are discussed in the main text; 
plantC = plant C inputs, Temp. = temperature, TOC = initial TOC, kHUM = decay rate constant of the HUM pool. 
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Figure 7 Comparison of sensitivity and importance for grassland in the SPA; sensitivity represented by the range of SOC 
changes associated with a standard (±10 %) change in each parameter (y-axis) and importance represented by the range of 
SOC changes associated with total change in each parameter (x-axis); labelled parameters are discussed in the main text; 
plantC = plant-C inputs, TOC = initial TOC: ppN = precipitation, Temp. = temperature. 
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(a) 

(b)

(c) 

Figure 8 The range of SOC stock change associated with variation in the TSMD-b parameter (which becomes relevant under 
conditions of topsoil moisture deficit) for the whole period (a), and the year-pairs (b) 1995 to 1996 (neither particularly dry or 
warm years) and (c) 2017 to 2018 (2018 had a hot and dry summer) for cropland, where the colour refers to replicates that were 
drier (red) or wetter (blue) than average, i.e. that had lower or higher than average precipitation, respectively; dSOC = range of 
change in SOC stocks – over the respective period – associated with the variation in the TSMD-b parameter as predicted by a 

linear model; points = individual replicates; lines = predicted lines, based on linear model. 
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4 Discussion 

4.1 Sensitivity and importance 

The aim of this work was to provide information enabling research needs and resources to be prioritised, to improve 

the simulation of SOC stock changes with RothC; in particular, the simulation of SOC stock changes in Switzerland’s 

agricultural soils, for national GHG reporting and the estimation of SOC sequestration potentials. This was carried 

out by identifying parameters most or least important for the simulation of SOC changes. The importance of a 

parameter involves two factors: Firstly, how sensitive the model is to the variation in each parameter, and secondly, 

the extent of the variation or uncertainty that is expected for that parameter. The range of SOC changes associated 

with the total variation in each parameter incorporates both factors and was therefore considered an indicator of 

importance. The advantage of this index is that it is applicable to parameters that have a linear or non-linear 

relationship with SOC change. The disadvantage of this index is that it cannot be used to partition the variation in 

SOC change between the parameters, however this was not of primary interest in this study. 

The amount that the parameters were set to vary by was decisive for outcome of this study. As the expected variation 

in some parameters is unknown or uncertain (e.g. was not data-driven, or was based on a small data set), it is 

possible that the expected variation was under- or overestimated. For this reason, and additional index was 

calculated, namely the range in SOC changes associated with a fixed (here, 10 %) change in each parameter. This 

indicated the sensitivity of the inventory system to each parameter. A comparison of the sensitivity and importance 

indices of the parameters was carried out to identify parameters that might have been misidentified as unimportant 

or important, due to an under-estimation or over-estimation of their variation, respectively. 

To check for the first possibility, we identified parameters that had a high sensitivity score but particularly low 

importance score. This could be important, because if the variation or uncertainty associated with such parameters 

was underestimated in this study, there is the risk that a potentially important parameter has been missed (i.e. we 

consider it to have low importance because we underestimated its variation). In SPA and to a lesser extent in cropland 

and year-round managed grassland, such parameters were identified. In the SPA, two parameters, plantC and initial 

TOC, had a lower importance than would be expected based on the sensitivity of the model to these parameters and 

indeed, the model is more sensitive to these parameters than it was to the most important parameter, temperature. 

In cropland, three parameters, evapotranspiration, initial TOC and the CUE scaling factor, had a lower importance 

than would be expected based on the sensitivity of the model to these parameters, though the effect here is less 

pronounced. A similar effect was seen for year-round managed grassland for the parameters, plantC, temperature 

and initial TOC. The variation or uncertainty attributed to these five parameters (CUE scaling factor, plantC, 

evapotranspiration, temperature and initial TOC) was data-driven. We consider the variation in the latter four 

parameters to have been well estimated and there is thus no indication that their importance was underestimated. 

For the parameter CUE scaling factor, it is possible that we underestimated its variation, as Qiao et al. (2019) 

indicated larger ranges of CUE than were applied in this analysis. It is therefore possible that the importance of this 

parameter has been underestimated. 

To check for the second possibility, we identified parameters that had a particularly high importance score compared 

to their sensitivity score. One such parameter, precipitation, was identified in the SPA. The variation attributed to this 

parameter was however data-driven and well estimated, and there is thus no indication that its importance has been 

overestimated. Reducing its variation would be an effective way of decreasing uncertainty in the SOC simulations. 

A final consideration is the duration over which the SOC changes are simulated, as this might affect the type of 

parameters deemed important. This study simulated SOC stocks for almost three decades. It is possible that if a 

much shorter period had been considered, parameters related primarily to initial conditions (e.g. initial C pool 

distributions) might have been deemed more important and parameters related to dynamics, less so. 

4.2 Implications for future resource / research priorities 

Two sets of parameters were identified that are i. consistently important or ii. consistently unimportant for simulating 

SOC stock changes in the three land use types. This is in spite of differences between them in terms of management 

and climate, and enables research and resource priorities to be set. 
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Three of the most important parameters are initial TOC, precipitation and temperature. The sensitivity of the 

simulations to the latter two variables is not particularly high, and their importance is dominated by their variation. 

The cause of variation in all three parameters is to a large extent the large regions – the strata – for which simulations 

are carried out, rather than uncertainty in their estimates per se (initial TOC is an exception as both sources of 

variation play a role, see below). This suggests much of their variation is an artefact of our method of up-scaling, an 

effect amplified also by Switzerland’s very variable topography and the fact that farming is carried out across this 

variable landscape. This implies that a move towards higher spatial resolution of simulations (e.g. raster-based 

simulations) would substantially improve the estimate of SOC changes for Switzerland. This should be a priority in 

the development of the inventory system. Such a move would also improve the estimates of evapotranspiration and 

clay content, two parameters of moderate importance. The estimate in initial TOC would however be improved only 

to a certain extent by a higher spatial resolution of the simulations and an improved estimate of this parameter is 

otherwise needed. This is being addressed in a current research project5, where soil parameters including SOC and 

soil texture are being estimated using digital soil mapping. Outputs from that project can be used to improve the 

estimate of the parameters initial TOC and clay content. 

The other three most important parameters, the CUE scaling factor, kHUM and kRPM, are model parameters. This 

implies firstly, that improvement of the inventory system needs to consider model as well as input parameters and 

secondly, that if the model is to be improved or calibrated to a region, these parameters should be prioritised. A 

possibility to improve estimates of the kHUM and kPRM parameters is the use of incubation experiments for their 

calibration (e.g. Mondini et al. 2017; Nicolardot et al. 1994), ideally incorporating the most common soil types in the 

study region. Such work forms part of the European Joint Programme ‘Soil’ subproject, CarboSeq6. Additionally, 

Zimmerman et al. (2007) demonstrated that soil organic matter fractions can be related to the pools used in RothC. 

The parameters OrgAm and OrgAm-HUM are of low (SPA) to moderate (cropland and year-round managed 

grassland) importance. For the SPA, this result can be explained by the very low amounts of OrgAm this grassland 

system receives. For cropland and year-round managed grassland, this result, as well as the fact that the OrgAm 

parameter is less important than the plantC parameter, is unexpected. It can be possibly explained by two reasons. 

The first is that C inputs from OrgAm are generally much lower than C inputs from plants; with the exception of 

cereals and silage corn (where few residues tend to remain on the field), plant C inputs – as calculated in the inventory 

system, including inputs from cover crops – are 1.6 to 6 times the amount of the OrgAm-C inputs. It is possible that 

for a given field receiving OrgAms, the inventory system has underestimated the inputs: The inventory system 

assumes OrgAms are spread evenly across all surfaces of a given crop or grassland, whereas in reality some will 

receive much more and some none. A corollary of this is that on the other hand, the inventory system probably 

overestimates the surfaces of a particular crop or grassland type receiving OrgAm inputs; it assumes all surfaces of 

a given crop or grassland type receive OrgAm inputs whereas in reality only some do. It is unclear how these two 

opposing biases might alter simulated SOC changes. A second possible reason why the OrgAm and Org-HUM 

parameters are only moderately important might be that the variation for Org-HUM was underestimated in this study, 

for the following reason: The default parameter value in RothC is 0.02 (2 % of OrgAm goes to the HUM pool). Peltre 

et al. (2012) indicated that OrgAm-HUM could be as high as 0.2 and this value was therefore used as an upper value 

for the PDF in this study. An initial sensitivity analysis assuming a uniform PDF of OrgAm-HUM (min = 0, max = 0.2) 

however caused biased estimates of SOC changes, with SOC gains being overestimated (data not shown). In order 

to avoid such a bias, a PDF with a median of 0.02 (i.e. the same as the RothC default) was used7. A corollary of this 

is that in the MC analysis, an OrgAm-HUM value of between 0 and 0.02 was as likely to be picked as a value of 

between 0.02 and 0.20, probably leading to an under-estimation of the variation in this parameter. Improving the 

estimate of how OrgAms are represented in RothC is however not as simple as improving the OrgAm-HUM parameter 

alone. It is known that different OrgAms have different decomposability; representing these adequately in RothC 

therefore requires different OrgAm-HUM parameter estimates (see Mondini et al., 2017 and references therein). Such 

an approach would however require information on the quantity of different OrgAm types added (i.e. an improvement 

of the parameter OrgAm), for individual farms and on an annual basis, which would be challenging to obtain. 

                                                      
5 Two projects financed by the Federal Office for the Environment being carried out at the Swiss soil competence centre: Nationwide digital 
mapping of C stocks in soils for Switzerland’s GHG inventory (“Landesweite digitale Kartierung von Kohlenstoffvorräten in Böden für das 
Treibhausgasinventar Schweiz ”); Technical and methodological basis for the digital mapping of soil properties ("Technische und methodische 
Grundlagen für die digitale Kartierung von Bodeneigenschaften"). 
6 https://projects.au.dk/ejpsoil/research-projects/carboseq/  
7 The log normal PDF meant the wide range of variation in this parameter indicated by Peltre et al. (2012) could nonetheless be captured. 

https://projects.au.dk/ejpsoil/research-projects/carboseq/
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However, there is an indication that improving their estimates is worthwhile: In the initial sensitivity analysis in which 

OrgAm-HUM values were on average higher (see above), the importance of the parameters OrgAm-HUM and OrgAm 

was higher (data not shown).  

The least important variables are the initial C pool distributions (of the HUM, IOM and RPM pools), as well as the 

kDPM and to a lesser extent kBIO. We suggest these parameters should not be a research priority. 

The response of SOC to changes in soil moisture is critical for simulating SOC cycling. There is however uncertainty 

in the soil moisture-respiration function of SOC models, including RothC (Falloon et al., 2011). In RothC, the soil 

moisture-respiration function is determined in part by the minimum beta parameter (TSMD-b), which determines the 

relative reduction of SOC mineralisation during periods of topsoil moisture deficit (Jenkinson et al., 1990). This study 

indicates that TSMD-b is not particularly important for SOC simulations. This interpretation requires prudence 

however, as it is based on SOC changes over almost three decades, meaning the effect of a parameter was 

integrated over a long period. Inspection of annual SOC change (calculation carried out for cropland only) showed 

that the TSMD-b parameter was important under certain conditions: For year-pairs where neither year was 

particularly dry or warm (e.g. 1995 to 1996 and 2004 to 2005), TSMD-b had little effect of SOC changes; on the other 

hand, for the year-pair 2017 to 2018 (in 2018 the summer was especially warm and dry), TSMD-b was more 

important, and especially so for replicates where the precipitation was low. The range in SOC changes of the most 

important parameter for cropland (kHUM) is 11.4 t C ha-1a-1, corresponding to an average annual SOC change of 

0.39 t C ha-1a-1. This is comparable to the range in annual SOC changes for the TSMD-b parameter (0.47 t C ha-1a-

1) and suggests that in years with prolonged drought, the TSMB-b parameter becomes one of the most important 

parameters for cropland (and presumably for grassland in lowland regions). Such drought conditions have not 

occurred frequently in Switzerland in the past, but will probably do so in the future, especially given that temperatures 

in Switzerland are rising faster than the global average (CH2018). It can therefore be expected that TSMD-b 

parameter will become more important for SOC simulations if the drought effects cannot be mitigated by irrigation. 

These results also predict that for countries where drought conditions occur regularly and are not mitigated by 

irrigation, this parameter is more important. 

This study indicates that the amount of plant C inputs is moderately important. For Switzerland, the importance of 

this parameter might increase if the inventory system moves to raster-based simulation. This is because the estimate 

of plant C inputs – or rather, the estimates of yield, from which many of the plant C inputs are derived – are currently 

not spatially-explicit; due to a lack of spatially-explicit yield data, national yield averages are used. The full benefit of 

simulations at a higher spatial resolution will not be realised if spatially-explicit yields are not obtained. This applies 

also to the parameter OrgAm. 

4.3 Concluding remarks 

A sensitivity analysis was carried out to contribute to prioritising research needs for the simulation of SOC stock 

changes in agricultural soils, in particular Switzerland’s inventory system. The importance of parameters varied 

massively; some have a very large influence on the SOC simulations whereas for others, the SOC changes varied 

little when they were varied. This highlights that such a sensitivity analysis is an efficient way of highlighting research 

or resource priorities, as there is clear distinction between those parameters whose estimates warrant much research 

or many resources, and those parameters that do not. The outcome of this sensitivity analysis strongly supports the 

reduction of the spatial scale of simulations, especially for regions with high topographic, climatic or pedological 

heterogeneity. There remain however further important (model) parameters that will not be improved with this change 

in the inventory system, and these should be a priority for research efforts and resources. Additionally, the advantage 

of simulations carried out at a higher spatial resolution can only be realised if spatially-explicit data become available 

for those parameters that vary at the farm level. Likewise, certain parameters are linked, meaning the improvement 

in the estimate of one of these parameters only makes sense if the estimate of the other parameter is also improved 

(e.g. OrgAm-HUM and the addition of different OrgAm types). Lastly, the study carried out separate sensitivity 

analyses for three different agricultural systems: cropland, year-round managed grassland and grassland in the SPA. 

Although a common set of parameters was identified that are most important to the three land use types, there were 

differences between the results, most notably between the SPA and the other two agricultural systems. This 

highlights the importance of carrying out these analyses separately for different agricultural systems that differ in 

management and location.   
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6 Appendix A – Parameter distributions 

Table 8 The properties of the probability density functions (PDFs) created for the sensitivity analysis using parameters information given in Table 2; stratum refers to 

regions as detailed in Wüst-Galley et al. (2020: pp. 28-31); two-initial abbreviations of crops and grassland types given in Appendix B; ‘variable’ indicates that the 

absolute values vary over time and are therefore not given. 

Parameter name Stratum 
Land use or OrgAm 
type or animal 

CV (%) shape of PDF 
Percentiles of PDF 

1 % 2.5 % 50 % 97.5 % 99 % 

Temperature (°C) all cropland 1.4 * truncated normal   variable   
 

all year-round managed 
grassland 

1.7 * truncated normal   variable   

 
all grassland, SPA 2.9 * truncated normal   variable   

Precipitation (mm) all cropland 26 truncated normal   variable   
 

all year-round managed 
grassland 

24 truncated normal   variable   

 
all grassland, SPA 43 truncated normal   variable   

Evapotranspiration (mm) all cropland 8.3 truncated normal   variable   
 

all year-round managed 
grassland 

7.3 truncated normal   variable   

 
all grassland, SPA 9.8 truncated normal   variable   

Plant C inputs (t C ha-1 a-1) all BA 6.6 truncated normal   variable   
 

all EM 8.3 truncated normal   variable   
 

all EP 8.3 truncated normal   variable   
 

all GM 8.3 truncated normal   variable   
 

all IM 8.3 truncated normal   variable   
 

all IP 8.3 truncated normal   variable   
 

all LM 8.3 truncated normal   variable   
 

all MA 7.2 truncated normal   variable   
 

all PO 11.1 truncated normal   variable   
 

all RA 7.1 truncated normal   variable   
 

all SB 10.8 truncated normal   variable   
 

all SC 20.1 truncated normal   variable   
 

all SU 8.3 truncated normal   variable   
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Parameter name Stratum 
Land use or OrgAm 
type or animal 

CV (%) shape of PDF 
Percentiles of PDF 

1 % 2.5 % 50 % 97.5 % 99 % 
 

all TR 8.35 truncated normal   variable   
 

all VE 8.3 truncated normal   variable   
 

all WH 5.97 truncated normal   variable   

OrgAm inputs (t C ha-1 a-1) all BA 7.8 truncated normal  
 

variable 
 

 
 

all EM receives 
no OrgAm 

n/a   n/a   

 
all EP 9.7 truncated normal   variable   

 
all GM 6.8 truncated normal   variable   

 
all IM 6.7 truncated normal   variable   

 
all IP 9.7 truncated normal   variable   

 
all LM 10.7 truncated normal   variable   

 
all MA 9.6 truncated normal   variable   

 
all PO 9.7 truncated normal   variable   

 
all RA 9.7 truncated normal   variable   

 
all SB 9.7 truncated normal   variable   

 
all SC 9.6 truncated normal   variable   

 
all SU 9.3 truncated normal   variable   

 
all TR 7.8 truncated normal   variable   

 
all VE receives 

no OrgAm 
n/a   n/a   

 
all WH 7.8 truncated normal   variable   

Herd sizes all cattle 6 normal   variable   

 all non-cattle 6.5 normal   variable   

OrgAm-C excretion rates all all -16 to +12 weakly right-skewed   variable   

Straw production (t C a-1) all all 6.7       

OrgAm-C loss during storage (%) all stacked manure 44.6 left-skewed 1.1 2.4 22.0 32.6 32.9 

 all slurry 51.1 left-skewed 0.4 0.7 7.9 12.7 12.8 

 all poultry waste 42.9 left-skewed 1.1 2.2 14.1 19.9 20.1 

 all deep litter 45.4 left-skewed 1.1 2.6 24.0 35.4 35.8 

 all fresh manure 50.1 normal 1.6 3.7 20.9 41.1 45.5 
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Parameter name Stratum 
Land use or OrgAm 
type or animal 

CV (%) shape of PDF 
Percentiles of PDF 

1 % 2.5 % 50 % 97.5 % 99 % 

Duration of OrgAm storage 
(years) 

all stacked manure n/a trapezoid 0.015 0.024 0.156 0.297 0.310 

 all slurry 25 # log normal 0.016 0.021 0.076 0.269 0.342 

 all poultry waste n/a trapezoid 0.021 0.032 0.169 0.301 0.313 

 all deep litter n/a trapezoid 0.015 0.024 0.156 0.297 0.310 

 all fresh manure 11.0 normal 0.079 0.084 0.107 0.130 0.134 

Initial TOC (t C ha-1) A1_F2 cropland 13.4 truncated normal 37.0 38.8 49.1 59.3 61.2 
 

A1_F2 year-round managed 
grassland 

22.4 36.2 39.9 61.5 82.8 87.0 
 

A3_F1 22.4 33.0 36.5 56.1 75.6 79.4 
 

A3_F3 22.4 39.7 43.8 67.4 90.9 95.4 
 

A4_F4_C grassland, SPA 22.4 30.4 33.5 51.6 69.5 73.0 
 

A4_F4_W 22.4 29.1 32.2 49.5 66.7 70.1 

Clay content (%) all cropland n/a n/a 10 +  20 +  35 + 

 all year-round managed 
grassland 

n/a n/a 10 +  20 +  35 + 

 all grassland, SPA n/a n/a 5 +  10 +  27 + 

Initial RPM pool (size) all cropland 14.5 normal 4.5 σ 4.8 σ 6.9 σ 10.2 σ 10.6 σ 
 

all year-round managed 
grassland 

21.9 normal 4.6 σ 5.0 σ 8.6 σ 13.1 σ 13.9 σ 

 all SPA 21.9 normal 3.0 σ 3.3 σ 6.8 σ 13.6 σ 14.5 σ 

Initial HUM pool (size) all cropland 12.4 normal 28.0 σ 29.1 σ 40.2 σ 58.1 σ 60.0 σ 

 all year-round managed 
grassland 

20.7 normal 27.9 σ 29.9 σ 50.7 σ 75.8 σ 79.0 σ 

 all SPA 20.7 normal 17.9 σ 19.8 σ 39.8 σ 79.1 σ 83.5 σ 

Initial IOM pool (size) all cropland 12.8 normal 3.0 σ 3.1 σ 4.4 σ 6.3 σ 6.6 σ 

 all year-round managed 
grassland 

21.1 normal 3.1 σ 3.4 σ 5.7 σ 8.6 σ 9.0 σ 

 all SPA 21.1 normal 2.0 σ 2.2 σ 4.5 σ 9.0 σ 9.5 σ 

DPM decay rate (a-1) all all 20 truncated normal 6.3 7.1 10.1 12.9 13.6 

BIO decay rate (a-1) all all 20 truncated normal 0.4 0.5 0.7 0.9 0.9 

RPM decay rate (a-1) all all 30 truncated normal 0.1 0.2 0.3 0.4 0.5 
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Parameter name Stratum 
Land use or OrgAm 
type or animal 

CV (%) shape of PDF 
Percentiles of PDF 

1 % 2.5 % 50 % 97.5 % 99 % 

HUM decay rate (a-1) all all 30 truncated normal 0.009 0.011 0.02 0.028 0.031 

DPM / RPM ratio of plant C inputs all all 21 normal 0.7 1 1.5 1.9 2.1 

TSMD-b all all 17.6 normal 0.2 0.3 0.4 0.5 0.6 

CUE scaling factor all all 19.8 normal 0.9 1.1 1.7 2.2 2.4 

OrgAm-HUM (proportion) all all 24.4 # log normal 0.002 0.004 0.019 0.095 0.158 

* refers to standard deviation, not CV; # refers to the CV of the log-transformed distribution; + actual (tested) values given; σ average across clay classes and strata  
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7 Appendix B – Crop and grassland abbreviations 

Table 9 Abbreviations of crops and grassland categories used throughout this report; see Wüst-Galley et al. (2020: 

pp. 36-40, 55) for details; SPA = summer pasture area 

Abbreviation Land use Crop name / grassland type 

BA Cropland Barley 

GM Ley (clover-grass) 

MA Grain maize 

PO Potato 

RA Rape seed (cooking oil) 

SB Sugar beet 

SC Silage and green corn 

TR Triticale 

VE Vegetables 

WH Wheat 

EM Grassland, 
year-round 
management 

Extensive meadow 

EP Extensive pasture 

IM Intensive meadow 

IP Intensive pasture 

LM Less intensive meadow 

SU Grassland in 
the SPA 

Summer pastures and meadows 
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8 Appendix C – Results of cropland 

In the following section the SOC stock changes resulting from the main MC analysis are shown. These dotplots 

display the change in SOC stocks of the individual replicates (total replicates = 3000), plotted against the value of 

each parameter. For all plots, “corr” refers to the pearson correlation coefficient, “r2” refers to the goodness of fit of 

the linear model or generalised additive model and “dSOC” refers to the range (maximum – minimum) in SOC stock 

changes across the range of the parameter in question, as predicted by the model and as indicated by the blue line. 

For parameters for which a truncated distribution was applied (see Table 2), the calculation of dSOC was carried out 

for the whole range of the parameter values. For all other parameters, the calculation of dSOC was carried out for 

95 % of the values of that parameter. The index dSOC portrays the importance of parameters. Unless otherwise 

stated, SOC stock changes were modelled with a linear model. 

 

Figure A - 1 The relationship between temperature and SOC stock changes 
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Figure A - 2 The relationship between precipitation (PPN) and SOC stock changes, modelled with an additive model 

 

 

Figure A - 3 The relationship between evapotranspiration (ET) and SOC stock changes 
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Figure A - 4 The relationship between plant C inputs and SOC stock changes 

 

 

Figure A - 5 The relationship between the amount of OrgAm-C inputs and SOC stock changes 
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Figure A - 6 The relationship between the initial SOC stocks and SOC stock changes 

 

 

Figure A - 7 The relationship between the clay content of the soil and SOC stock changes; dSOC refers to the largest difference 
between the three mean dSOC values of the clay content classes 
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Figure A - 8 The relationship between the timing of C additions and SOC stock changes; dSOC refers to the largest difference 

between the three mean dSOC values 

 

 

Figure A - 9 The relationship between the initial HUM pool size and SOC stock changes 
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Figure A - 10 The relationship between the initial IOM pool size and SOC stock changes 

 

 

Figure A - 11 The relationship between the initial RPM pool size and SOC stock changes 
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Figure A - 12 The relationship between the BIO pool decay rate constant and SOC stock changes 

 

 

Figure A - 13 The relationship between the DPM pool decay rate constant and SOC stock changes 
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Figure A - 14 The relationship between the HUM pool decay rate constant and SOC stock changes 

 

 

Figure A - 15 The relationship between the RPM pool decay rate constant and SOC stock changes, modelled with an additive 
model 
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Figure A - 16 The relationship between the DPM / RPM ratio and SOC stock changes 

 

 

Figure A - 17 The relationship between the TSMD-b parameter (applied by RothC during periods of strong topsoil moisture 
deficit) and SOC stock changes 
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Figure A - 18 The relationship between the CUE scaling factor and SOC stock changes, modelled with an additive model 

 

 

Figure A - 19 The relationship between the proportion of OrgAm inputs going to the HUM pool and SOC stock changes; note the 
natural log x-axis 
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9 Appendix D – Results of year-round managed grassland 

In the following section the SOC stock changes of the individual replicates (total replicates = 3000) are plotted against 

the variation in each parameter. For all plots, “corr” refers to the pearson correlation coefficient, “r2” refers to the 

goodness of fit of the linear model or generalised additive model and “dSOC” refers to the range (maximum – 

minimum) in SOC stock changes across the range of the parameter in question, as predicted by the model and as 

indicated by the blue line. For parameters for which a truncated distribution was applied (Table 2), the calculation of 

dSOC was carried out for the whole range of the parameter values. For all other parameters, the calculation of dSOC 

was carried out for 95 % of the values of that parameter. Unless otherwise stated, SOC stock changes were modelled 

with a linear model.  

 

 

Figure A - 20 The relationship between temperature and SOC stock changes 
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Figure A - 21 The relationship between precipitation (PPN) and SOC stock changes, modelled with an additive model 

 

 

Figure A - 22 The relationship between evapotranspiration (ET) and SOC stock changes 
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Figure A - 23 The relationship between plant C inputs and SOC stock changes 

 

 

Figure A - 24 The relationship between OrgAm-C inputs and SOC stock changes 
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Figure A - 25 The relationship between initial SOC stocks and SOC stock changes 

 

 

Figure A - 26 The relationship between the clay content of the soil and SOC stock changes; dSOC refers to the largest 
difference between the three mean dSOC values of the clay content classes 

   



Modelling SOC changes with RothC: Sensitivity analysis 

 

 

Agroscope Science | No. 113 / 2021 49 

Agroscope Science | No. 113 / 2021 

 

Figure A - 27 The relationship between the timing of C additions and SOC stock changes; dSOC refers to the largest difference 
between the three mean dSOC values 

 

 

Figure A - 28 The relationship between the initial HUM pool size and SOC stock changes 
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Figure A - 29 The relationship between the initial IOM pool size and SOC stock changes 

 

 

Figure A - 30 The relationship between the initial RPM pool size and SOC stock changes 
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Figure A - 31 The relationship between the BIO pool decay rate constant and SOC stock changes 

 

 

Figure A - 32 The relationship between the DPM pool decay rate constant and SOC stock changes 
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Figure A - 33 The relationship between the HUM pool decay rate constant and SOC stock changes 

 

 

Figure A - 34 The relationship between the RPM pool decay rate constant and SOC stock changes 
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Figure A - 35 The relationship between the DPM / RPM ratio and SOC stock changes 

 

 

Figure A - 36 The relationship between TSMD-b (applied by RothC during periods of strong topsoil moisture deficit) and SOC 
stock changes 
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Figure A - 37 The relationship between the CUE scaling factor and SOC stock changes 

 

 

Figure A - 38 The relationship between the proportion of OrgAm inputs going to the HUM pool and SOC stock changes; note the 
natural log x-axis 
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10 Appendix E – Results of summer pasture area 

In the following section the SOC stock changes of the individual replicates (total replicates = 3000) are plotted against 

the variation in each parameter. For all plots, “corr” refers to the pearson correlation coefficient, “r2” refers to the 

goodness of fit of the linear model or generalised additive model and “dSOC” refers to the range (maximum – 

minimum) in SOC stock changes across the range of the parameter in question, as predicted by the model and as 

indicated by the blue line. For parameters for which a truncated distribution was applied (Table 2), the calculation of 

dSOC was carried out for the whole range of the parameter values. For all other parameters, the calculation of dSOC 

was carried out for 95 % of the values of that parameter. Unless otherwise stated, SOC stock changes were modelled 

with a linear model.  

 

Figure A - 39 The relationship between temperature and SOC stock changes 
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Figure A - 40 The relationship between precipitation (PPN) and SOC stock changes 

 

 

Figure A - 41 The relationship between evapotranspiration (ET) and SOC stock changes 
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Figure A - 42 The relationship between total plant C inputs and SOC stock changes 

 

 

Figure A - 43 The relationship between OrgAm-C inputs and SOC stock changes 
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Figure A - 44 The relationship between initial SOC stocks and SOC stock changes 

 

 

Figure A - 45 The relationship between the clay content of the soil and SOC stock changes; dSOC refers to the largest 
difference between the three mean dSOC values of the clay content classes 
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Figure A - 46 The relationship between the timing of C additions and SOC stock changes; dSOC refers to the largest difference 
between the three mean dSOC values 

 

 

Figure A - 47 The relationship between the initial HUM pool size and SOC stock changes 
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Figure A - 48 The relationship between the initial HUM pool size and SOC stock changes 

 

 

Figure A - 49 The relationship between the initial RPM pool size and SOC stock changes 
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Figure A - 50 The relationship between the decay rate of the BIO pool and SOC stock changes 

 

 

Figure A - 51 The relationship between the decay rate of the DPM pool and SOC stock changes 
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Figure A - 52 The relationship between the decay rate of the HUM pool and SOC stock changes 

 

 

Figure A - 53 The relationship between the decay rate of the RPM pool and SOC stock changes 
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Figure A - 54 The relationship between the DPM / RPM ratio and SOC stock changes 

 

 

Figure A - 55 The relationship between TSMD-b (applied by RothC during periods of strong topsoil moisture deficit) and SOC 
stock changes 
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Figure A - 56 The relationship between the CUE scaling factor and SOC stock changes 

 

 

Figure A - 57 The relationship between the proportion of OrgAm inputs going to the HUM pool and SOC stock changes; note the 
natural log x-axis 


