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Abstract 

Background: Next-generation sequencing (NGS) methods and especially 16S rRNA gene amplicon sequencing have 
become indispensable tools in microbial ecology. While they have opened up new possibilities for studying microbial 
communities, they also have one drawback, namely providing only relative abundances and thus compositional data. 
Quantitative PCR (qPCR) has been used for years for the quantification of bacteria. However, this method requires 
the development of specific primers and has a low throughput. The constraint of low throughput has recently been 
overcome by the development of high-throughput qPCR (HT-qPCR), which allows for the simultaneous detection of 
the most prevalent bacteria in moderately complex systems, such as cheese and other fermented dairy foods. In the 
present study, the performance of the two approaches, NGS and HT-qPCR, was compared by analyzing the same DNA 
samples from 21 Raclette du Valais protected designation of origin (PDO) cheeses. Based on the results obtained, the 
differences, accuracy, and usefulness of the two approaches were studied in detail.

Results: The results obtained using NGS (non-targeted) and HT-qPCR (targeted) show considerable agreement in 
determining the microbial composition of the cheese DNA samples studied, albeit the fundamentally different nature 
of these two approaches. A few inconsistencies in species detection were observed, particularly for less abundant 
ones. The detailed comparison of the results for 15 bacterial species/groups measured by both methods revealed a 
considerable bias for certain bacterial species in the measurements of the amplicon sequencing approach. We identi-
fied as probable origin to this PCR bias due to primer mismatches, variations in the number of copies for the 16S rRNA 
gene, and bias introduced in the bioinformatics analysis.

Conclusion: As the normalized microbial composition results of NGS and HT-qPCR agreed for most of the 21 cheese 
samples analyzed, both methods can be considered as complementary and reliable for studying the microbial com-
position of cheese. Their combined application proved to be very helpful in identifying potential biases and overcom-
ing methodological limitations in the quantitative analysis of the cheese microbiota.
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Introduction
Molecular biology methods are increasingly replacing 
classical microbiological methods for the investigation of 
microbial communities in food products. More specifi-
cally, new developments in sequencing technology have 
made the use of next-generation sequencing (NGS) more 
affordable and widely applicable. Especially, 16S rRNA 
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gene amplicon sequencing is becoming increasingly 
widespread to investigate the composition of bacterial 
communities in a variety of ecosystems. Nevertheless, 
the optimization and validation of such approaches can 
be a challenging task, especially because many differ-
ent aspects have to be considered to achieve reliable 
results [1, 2]. For instance, the comparison of commonly 
used sequencing platforms, databases, and classification 
algorithms applied to mock communities consisting of 
bacterial species found in dairy products has revealed 
significant variations in the observed bacterial com-
munity compositions [3]. Furthermore, the accurate 
taxonomic classification of species in complex samples 
remains a challenging task, which depends on many fac-
tors, such as the selected primers for the variable 16S 
rRNA gene region, the taxonomy assignment method, 
and the database used [4–7]. Ecosystem-based databases 
for taxonomy assignment can achieve higher resolution 
at the species level [8–11] as shown by an improvement 
in species level classification obtained with a specific and 
manually curated database for milk and cheese analysis 
as compared to more general databases [9].

Apart from the comparison of the sequencing platforms 
and the bioinformatics analysis, it is relatively complex 
to validate the results of NGS with other approaches, as 
most other methods do not provide comparable in-depth 
data. For instance, a study comparing traditional culture 
methods and NGS in fecal and hypopharyngeal sam-
ples of healthy children found that the second method 
identified 7 to 20 times more unique species [12]. Most 
frequently, the 16S rRNA gene amplicon and shotgun 
sequencing methods have been compared to each other 
[13–17]. However, a large study of microbial communi-
ties in lakes in Brazil has reported a weak correlation and 
major differences in taxonomic diversity and abundance 
data between the two methods, with amplicon sequenc-
ing detecting significantly more phylum- and family-level 
diversity [17].

An inherent limitation of the amplicon sequencing 
method is its compositional information in terms of 
the relative abundances of the individual members of 
the community (operational taxonomic units [OTUs], 
amplicon sequence variants [ASVs], and taxa). However, 
quantifying different members of complex microbial 
communities is crucial for differential abundance analy-
sis, such as to better understand the temporal dynam-
ics of microbial communities and, in the case of food 
microbiology, to identify taxonomic groups that impact 
quality by causing off-flavors in fermented foods when 
reaching certain levels [18, 19]. Quantitative real-time 
PCR (qPCR) is one of the most widely used methods to 
precisely quantify bacteria in complex ecosystems. A 
difficulty posed for the quantification of specific taxa in 

complex systems is that specific primer systems have to 
be designed, which can be a very labor-intensive task. In 
addition, the low throughput of conventional qPCR sys-
tems is a limitation that adds to high labor and material 
costs. The development of high-throughput qPCR (HT-
qPCR) has led to a reduction in the work load and mate-
rial costs (i.e., PCR chemicals) and has opened up new 
fields of application. These include the investigation of 
synthetic bacterial soil communities [20], the determina-
tion of functional genes in soils [21], the quantification of 
pathogens in spiked feces and environmental water sam-
ples [22], the investigation of microbial diversity in the 
intestines of piglets [23], and the quantification of bacte-
riophages of the species Lactococcus (Lc.) lactis and Leu-
conostoc spp. in cheese milk [24].

In food microbiology, qPCR and NGS have been 
increasingly used in recent years to better understand 
the microbial composition of various foods [25, 26]. Fer-
mented foods are composed of an often limited number 
of core species selected by the strictly controlled condi-
tions during the production process and the limited sup-
ply of nutrients, pH, and temperature. Therefore, they are 
particularly suitable for the study of the bacterial com-
munities by qPCR. However, HT-qPCR has only recently 
been used for the systematic analysis of fermented foods 
[27], while numerous studies have applied NGS [26, 
28–30].

The aim of this study was to compare the performance 
of a 16S rRNA gene amplicon sequencing approach to a 
recently developed HT-qPCR method for the analysis of 
cheese DNA samples. Raclette du Valais protected des-
ignation of origin (PDO) cheeses were selected for their 
higher microbial diversity compared to other cheeses, 
resulting from the use of raw milk and the low scalding 
temperature. To this end, we analyzed bacterial commu-
nity composition in DNA samples from 21 Raclette du 
Valais PDO cheeses originating from the same number 
of different cheese producers distributed in the Canton 
of Valais (Switzerland) using both approaches and com-
pared the results.

Materials and Methods
Sampling
In this study, 21 Raclette du Valais PDO cheese loaves 
(S01-S21) produced in the same number of different 
cheese dairies were collected after 120 days of ripening. 
Twenty of the cheeses were manufactured on the same 
date, and one cheese (S17) was manufactured 11 days 
later. Raclette du Valais PDO is a semi-hard, smear-rip-
ened, full fat cheese produced from raw milk and mainly 
consumed in melted form after a ripening time of at least 
three months. For the production of Raclette du Valais 
PDO, the 21 cheese dairies followed the specifications of 
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the Raclette du Valais AOP association [31]. With regard 
to the use of starters and additional cultures, a mesophilic 
starter culture of lactic acid bacteria is added consisting 
of strains of Lc. lactis subsp. lactis, Lc. lactis subsp. crem-
oris, and Lc. lactis subsp. lactis biovar diacetylactis; and, 
depending on the production site, the thermophilic lactic 
acid bacteria Streptococcus thermophilus and/or Lactoba-
cillus helveticus are occasionally also added to the cheese 
milk [32].

DNA extraction
Bacterial pellets from cheese were obtained by adding 
10 g of cheese to 90 ml modified peptone water (10 g/l 
peptone from casein, 5 g/l sodium chloride, 20 g/l triso-
dium citrate dihydrate, pH 7.0) and incubating for 10 min 
at 40 °C. The sample was then homogenized for 3 min in 
a Stomacher (Masticator, IUL Instruments, Königswinter, 
Germany). A 50 μl volume of 10% (w/v) sodium dodecyl 
sulfate was then added to 10 ml of the homogenate, which 
was then thoroughly mixed and centrifuged (4000 × g, 
room temperature, 30 min). Cell lysis and genomic DNA 
extraction were performed using the EZ1 DNA Tissue 
kit and a BioRobot® EZ1 workstation (Qiagen, Hilden, 
Germany). Briefly, bacterial pellets were resuspended 
in 250 μl G2 buffer (EZ1 DNA Tissue kit), transferred in 
0.5 ml skirted tubes containing 100 mg 0.1 mm low bind-
ing zirconium beads (OPS Diagnostics, Lebanon, NJ, 
USA), and shaken 15 s at medium speed in a bead rup-
tor (Omni International Inc., Kennesaw, GA, USA). Cell 
lysates were then processed by the BioRobot® EZ1 work-
station. Genomic DNA was eluted in a volume of 100 μl, 
and the concentration was measured using a NanoDrop® 
ND-1000 spectrophotometer (NanoDrop Technologies, 
Thermo Fisher Scientific, Waltham, MA, USA).

HT‑qPCR primers
The primers used for HT-qPCR in this study were 
described in a previous study [27]. Briefly, 24 target spe-
cies/subspecies were selected based on a review of the 
literature and our own preliminary results from the 16S 
rRNA gene amplicon sequencing of Gruyere and the 
Raclette du Valais PDO cheeses considered in this study 
(unpublished data). The selection criteria for the target 
species were the relative abundance and frequency of 
detection as well as known impacts on cheese quality.

HT‑qPCR standards
The standards for quantification in the HT-qPCR sys-
tem were produced using standard calibration curves 
of gBlock™ Gene Fragments (Integrated DNA Tech-
nologies, LubioScience, Switzerland), described in detail 
previously [27]. Copy numbers for quantification were 

calculated using standard calibration curves ranging 
from  107 to  103 copies/μl.

Microfluidic HT‑qPCR
HT-qPCR was performed using a 192.24 Dynamic Array 
integrated fluidic circuit (IFC; Fluidigm Corporation, 
San Francisco, CA, USA). The assay mix consisted of 3 μl 
2× Assay Loading Reagent (Fluidigm Corp.) added to 
3 μl primer mix (forward and reverse, 10 μM). A sample 
pre-mix was prepared by combining 3 μl 2× SsoFast™ 
EvaGreen® Supermix with low ROX (Biorad, Cressier, 
Switzerland) and 0.3 μl 192.24 Delta Gene Sample Rea-
gent (Fluidigm Corp.). Finally, 2.7 μl of each sample were 
added to 3.3 μl sample pre-mix. The IFC was loaded 
according to the manufacturer’s instructions [33]. Briefly, 
3 μl of each assay and 3 μl of each sample were distributed 
to the respective inlet, and the IFC was loaded using the 
Juno Load Mix 192.24 GE script. The loaded IFC was 
transferred to the Biomark instrument and run with the 
GE 192x24 PCR + Melt v2 program, as follows: hot start 
95 °C for 1 min, followed by 30 cycles of denaturation at 
96 °C for 5 s, and annealing and elongation at 60 °C for 
20 s. A melting curve analysis was performed with a tem-
perature increase of 1 °C per 3 s from 60 to 95 °C.

HT‑qPCR data analysis
The results from the 192.24 Dynamic Array IFCs were 
analyzed with the Fluidigm Real-Time PCR Analysis 
Software version 4.5.2 (Fluidigm Corp.) as described in 
a previous study [27]. The melting curve peak thresh-
old was set to 0.025 -dRn/dT based on a visual inspec-
tion of the baseline fluorescence. All reactions flagged by 
the Real-Time PCR Analysis Software were interpreted 
as negative results. The copies/μl of the specific targets 
were calculated for each reaction using the standard cali-
bration curves, and all reactions below an 800 copies/μl 
cut-off were interpreted as negative, as recommended by 
the manufacturer [34]. Average copies/μl were only cal-
culated if at least two of three reactions were positive; 
otherwise, the results were interpreted as negative.

16S rRNA gene amplicon sequencing
Amplicon libraries were prepared using the unidi-
rectional fusion method (Thermo Fisher Scientific, 
Waltham, MA, USA). PCR of the V1–V2 16S rRNA 
gene region was performed in 50 μl reactions using 4 μl 
of DNA, 0.1 μM primer NGS_ABCxF27 (5′- CCA TCT 
CAT CCC TGC GTG TCT CCG ACT CAG |Barcode X| 
AG AGT TTG ATC MTG GCT CAG − 3′) and 0.1 mM 
primer NGS_trP1_355 (5′- CCT CTC TAT GGG CAG 
TCG GTG ATG CWG CCT CCC GTA GGA GT − 3′), 
and 45 μl Platinum™ PCR SuperMix High Fidelity 
(Thermo Fisher Scientific, Waltham, MA, USA). The 
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amplification was carried out as follows: 94 °C for 2 min, 
followed by 18 cycles of 94 °C for 30 s, 55 °C for 30 s, and 
68 °C for 30 s. All amplicons were purified using AMPure 
XP beads (Beckman Coulter, Brea, CA, USA) with a 
bead-to-DNA ratio of 1.8. The quality control and quan-
tification of the amplicon library was performed using an 
Agilent 2100 Bioanalyzer (Agilent Technologies, Santa 
Clara, CA) and the High Sensitivity DNA Assay. After-
wards, all amplicons were pre-diluted and equimolarly 
pooled to a 40 pM final library. Template preparation, 
chip loading, and sequencing were performed according 
to the manufacturer’s instructions using Ion Chef™ Sys-
tem and Ion S5™ System and an Ion530 Chip (Thermo 
Fisher Scientific, Waltham, MA, USA).

16S rRNA gene amplicon sequencing data analysis
The raw sequences, with an average length of 320 bp, 
were primer trimmed and quality filtered (maxEE = 15, 
truncQ = 6, maxN = 0, n = 1e+06, minLen = 100, max-
Len = 460) in DADA2 [35]. Amplicon sequence variances 
(ASVs) were obtained in DADA2 with the parameter 
POOL = “pseudo.” Taxonomic annotation was performed 
using DAIRYdb v1.2.4 [9] with IDTAXA [36]. Biostatis-
tical analyses were done using the PHYLOSEQ package 
[37] in R v4.0.2 [38]. Copy number normalization was 
based on the copy number information available in the 
Ribosomal RNA Database (rrnDB, version 5.7, January 
18, 2021, [39]).

Method comparison data analysis
For the data analysis, we used the following Python pack-
ages: Jupyter-notebook v6.2.0 [40] with Python v3.9.2 
and IPython v7.21.0 [41], NumPy v1.20.1 [42], seaborn 
v0.11.1 [43], pandas v1.2.3 [44], SciPy v1.6.1 [45], Mat-
plotlib v3.3.2 [46], statsmodels v0.12.2 [47], and rpy2 
v3.4.3. Further, R v4.0.3 [38] and the metacal v0.2.0 pack-
age [48] were used for bias estimation (see below). The 
data analysis was performed as outlined in the htqpcr_
ngs_comparison_R.ipynb notebook available in Addi-
tional file 1 and the Github repository [49].

Briefly, the taxonomic assignments and number of 
reads from the 16S rRNA gene amplicon sequencing 
(NGS) analysis data for the 21 Raclette du Valais PDO 
samples were extracted from the data set. The most prev-
alent species in the NGS results were defined as species 
detected in more than 30% of the cheese samples. Rela-
tive species abundance was calculated for each cheese 
DNA sample considering all members of the community 
to create plots representing the community composition. 
HT-qPCR analysis was performed using the HTqPCR_
dataparser.py script. Further, the data for the two Lc. lac-
tis subspecies from HT-qPCR were grouped to Lc. lactis. 
For the bias estimation, the data from both methods were 

filtered to consider only the 15 bacterial species/groups 
measured by both methods (shared positive). The NGS 
data were defined as the observed category, and only 
read counts for species also detected by the HT-qPCR 
approach (reference) were included. Further, pseudoc-
ounts (=1) were added in the observed data (NGS) for 
species only detected in the reference data (HT-qPCR). 
Bias estimates were calculated using metacal with the 
number of reads and copies of the 15 investigated bacte-
rial species/groups measured by both methods as input. 
A corrected data set was made by grouping the data for 
Lactiplantibacillus pentosus and Lactiplantibacillus 
plantarum for NGS and for L. plantarum and Lactiplan-
tibacillus paraplantarum for the HT-qPCR to a common 
L. plantarum group category.

Bias estimation
The model for bias estimation is described in detail in 
[48]. Briefly, the assumption of this bias model is that the 
bias is caused by the different efficiencies for the given 
measurement (relative or absolute abundance) of differ-
ent species. The bias estimates are calculated from taxon 
proportions to make the bias independent of the sample’s 
composition. The systematic difference between meas-
urements from different methods can be estimated by the 
difference in their biases. If the actual composition is not 
known, but a reference composition is considered as the 
true composition, this differential bias is equivalent to 
the bias of the method under investigation. A point esti-
mate of the bias (the ratio of the efficiency of a species to 
the geometric mean efficiency of all species) for each spe-
cies with known (reference) abundance can then be cal-
culated for the samples. Geometric standard errors were 
estimated from 1000 bootstrap replicates.

Reference sequence alignments
Representative genomes of the reference species were 
downloaded from the National Center for Biotechnol-
ogy Information (NCBI). The 16S rRNA gene sequences 
were extracted using Barrnap V 0.9 [50]. Non-redundant 
sequences of the V1–V2 region of the 16S rRNA gene 
were aligned using PRANK V .150803 [51].

Construction of phylogenetic tree from reference 
sequences and ASVs
The reference 16S rRNA gene sequences for the L. plan-
tarum group species were extracted from the DAIRYdb 
v1.2.4 fasta file [52]. ASVs assigned to the L. plantarum 
group species were filtered. The sequences of the V1–V2 
region of the 16S rRNA gene were aligned using PRANK 
V .150803, and the resulting multiple sequence alignment 
was subjected to a rapid bootstrap analysis using RAxML 
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[53]. The best-scoring maximum likelihood tree was visu-
alized using iTOL [54].

Results and Discussion
HT‑qPCR and 16S rRNA gene amplicon sequencing results
The average sequencing depth for 16S rRNA gene ampli-
con sequencing was 471,184 reads (range: 361496–
632,269). In total, 9,894,860 reads were classified to 233 
ASVs. These ASVs were assigned to 47 different sequence 
groups, and 45 of these were classified to the species 
level, while for two ASV groups only a classification to 
the family level (Ruminococcaceae, Streptococcaceae) was 
possible. Four core species were detected in all 21 cheese 
samples. These species were Lacticaseibacillus paraca-
sei, Lc. lactis, L. helveticus, and S. thermophilus. Ten spe-
cies were present in more than 80% of the samples and 
belonged to either the Lactobacillaceae or the Streptococ-
caceae families. The 21 most prevalent species (occurring 
in at least 30% of cheeses) represented on average 99.96% 
(range 99.79–100%) of all the reads and included species 

from the Lactobacillaceae, Leuconostocaceae, Enterococ-
caceae, and Streptococcaceae families (Fig. 1).

The HT-qPCR system consisted of specific primer pairs 
targeting 24 different bacterial species/subspecies, of 
which a total of 17 species/subspecies were quantified in 
at least one of the cheese DNA samples (Fig. 2). Lc. lactis 
subsp. lactis, Lc. lactis subsp. cremoris, and L. paracasei 
were detected in all samples, while S. thermophilus and 
L. plantarum were detected in all but one sample (sample 
S10). Lc. lactis subsp. lactis was the dominant subspecies 
in all samples. Surprisingly, L. helveticus was detected 
only in five samples by HT-qPCR. Three additional spe-
cies (Lentilactobacillus parabuchneri, Loigolactobacil-
lus coryniformis, and Latilactobacillus curvatus) were 
detected in more than 80% (17) of the samples, while L. 
paraplantarum was detected in 62% (13) of the cheese 
samples. The seven species in the HT-qPCR system that 
were not detected in any of the cheeses examined cor-
responded to Clostridium tyrobutyricum, Enterococcus 
durans, Enterococcus faecium, Lacticaseibacillus casei, 

Fig. 1 Bacterial community composition determined by 16S rRNA gene amplicon sequencing. Species detected in Raclette du Valais PDO cheese 
DNA samples (S01-S21) with an average relative abundance above 0.5% are shown in the upper panel and the species with a lower average 
abundance in the lower panel. The relative abundance of the 21 species detected in more than 30% of the samples are depicted with the species 
name; the other 26 taxa were classified as other species
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Fig. 2 Heatmap of HT-qPCR results. The heatmap annotation depicts the average log copies/μl and the standard deviation of technical triplicates. 
When not all samples were positive, the number of positive samples out of the total number of samples is given in brackets
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Limosilactobacillus fermentum, Pediococcus acidilactici, 
and Propionibacterium freudenreichii.

The sampled Raclette du Valais PDO originated from 
commercial batches of good-quality cheeses and thus 
did not exhibit any sensory-perceptible quality defects. 
Therefore, the absence or at least very low relative abun-
dance of bacterial species responsible for cheese quality 
defects, such as C. tyrobutyricum (butyric acid fermen-
tation) or E. durans and E. faecium (potential tyramine 
producers), was expected. Moreover, in the production of 
Raclette du Valais PDO, no adjunct cultures containing L. 
casei, L. fermentum, P. acidilactici, or Propionibacterium 
freudenreichii are used, therefore the detection of these 
species depends on whether they were present in the raw 
milk.

To our knowledge, no study has investigated Raclette 
du Valais PDO cheese using 16S rRNA amplicon 
sequencing and HT-qPCR yet. Other semi-hard cheese 
varieties made from raw milk have been investigated by 
16S rRNA gene amplicon sequencing, but only few stud-
ies report the community compositions at a species level 
resolution. In two Raclette-type cheeses made from raw 
milk, analyzed with the same NGS approach as in the 
present study, the dominant species were Lc. lactis, L. 
plantarum/pentosus and Weissella paramesenteroides, 
with a relative abundance of Lc. lactis exceeding 50% 
[29]. In the present study W. paramesenteroides was also 
detected in five samples with a low abundance (<0.085%). 
A recent study identified Lactobacillus delbrueckii, Lac-
ticaseibacillus rhamnosus, L. casei, L. helveticus and L. 
fermentum as the most abundant and prevalent species 
in Grana Padano cheeses [55]. In contrast to Raclette du 
Valais the scalding temperature is higher (56 °C) and the 
natural whey starters are dominated by S. thermophilus, 
L. delbrueckii and L. helveticus and lower proportions of 
L. fermentum [56]. Ten species, namely, S. thermophilus, 
Lc. lactis, L. rhamnosus, Latilactobacillus sakei, L. coryni-
formis, Pediococcus pentosaceus, W. paramesenteroides, 
L. plantarum, L. (para-)casei and Weissella hellenica 
(sample S20 only) with an average relative abundance 
above 0.5% in three samples of Danish cheeses made 
from raw milk ripened for 56 days [57], were also found 
in our study of Raclette du Valais. In contrast to Grana 
Padano, the scalding temperature used for the manufac-
ture of this cheese was 39 °C, which is more comparable 
to the temperature used for Raclette du Valais manufac-
ture (36 °C). Ligilactobacillus acidipiscis and Staphylococ-
cus saprophyticus were taxa of the indigenous microbiota 
exclusively found in the Danish cheeses. These results 
support the observations of many studies showing that 
parameters such as the type and origin of milk, milk 
treatment, and the type of ripening significantly influence 
the microbiota in ripened cheese (reviewed in [58, 59]).

Comparison of HT‑qPCR and 16S rRNA gene amplicon 
sequencing results
The HT-qPCR analysis results represent, after compari-
son with a standard curve, the number of copies of the 
species-specific single copy gene per μl of sample, while 
the amplicon sequencing results correspond to the rela-
tive abundance of taxa based on the number of reads 
with respect to the total number of reads of the corre-
sponding V1–V2 16S rRNA gene region. The fundamen-
tal differences in the resulting data (absolute or relative 
abundances) and the data analysis (standard or com-
positional) make a direct comparison between the two 
methods challenging. The first attempt to compare the 
performance of the two methods qualitatively was based 
on a comparison of the measured copy numbers versus 
the number of NGS reads (Fig. 3A). Given that the HT-
qPCR system contained specific primer pairs that were 
able to discriminate between the subspecies of Lc. lactis 
(subsp. lactis and subsp. cremoris), while the amplicon 
sequencing was not able to discriminate these subspecies, 
the data for the two subspecies were pooled to account 
for the total number of Lc. lactis for the comparison of 
the methods. The data points in Fig.  3A were divided 
into four groups. The group “shared positive” represents 
measurements for the 15 species that were covered and 
detected by both methods. The second and third groups 
(“qPCR only” and “NGS only”) included measurements 
in which the same 15 species were detected either by HT-
qPCR or NGS. The measurements for all other taxa that 
were not covered by the selected HT-qPCR assays were 
classified as “NGS exclusive.” The detection of a larger 
number of exclusive taxa using the 16S rRNA gene ampli-
con sequencing method was expected given the non-tar-
geted nature of the NGS approach. However, in the case 
of the two species L. paraplantarum and P. pentosaceus 
that were detected solely by HT-qPCR, the unexpected 
outcome may indicate errors or bias in the analysis of 
the NGS results. For the log-transformed data (Fig. 3A) 
and the relative abundance data (Fig. 3B) of the “shared-
positive” group, positive linear correlations  (R2 = 0.872 
and  R2 = 0.929, respectively) were observed. The relative 
abundance data in Fig.  3B indicate that the qualitative 
disagreement between the methods was mainly due to 
species with low relative abundance, which were detected 
only by the NGS method.

A summary of the frequencies of the detection of 
the most prevalent species by both methods is shown 
in Table  1. In 66 cases, NGS exclusively detected spe-
cies also targeted by HT-qPCR (“NGS only”), and the 
relative abundances for these species were in a range 
between 0.0002 and 0.322%. For example, L. helveticus 
was detected in all samples by NGS, while HT-qPCR did 
not detect L. helveticus in 16 samples with low relative 
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abundances (0.004–0.043%). Similarly, L. delbrueckii was 
exclusively detected by NGS in 15 cheese DNA samples 
with relative abundances between 0.002–0.025%. In con-
trast, L. paraplantarum and P. pentosaceus were detected 
in a higher number of samples by HT-qPCR than by 
NGS. L. paraplantarum was detected in 13 samples by 
HT-qPCR with abundances in a range between 1472 and 
53,306 copies/μl, whereas this species was never detected 
by NGS in any of the analyzed samples. In five samples, P. 
pentosaceus was exclusively detected by HT-qPCR with 
a range of 1389–6542 copies/μl. Reciprocally, P. pentosa-
ceus was exclusively detected by NGS in one sample (rel-
ative abundance 0.0055%).

The relatively high detection limit of 800 copies/μl is 
most likely responsible for the inability of the HT-qPCR 
method to detect low abundance species. The number 
of target gene copies presumably also has an influence 
on sensitivity. The HT-qPCR system targets specific 

single-copy genes, while according to the rrnDB data-
base, most of the prevalent species contain about five 
copies (range: 3–9) of the 16S rRNA gene (Additional 
file  2). The sensitivity of the HT-qPCR assays is fur-
ther limited by the nanoliter-scale reactions used in the 
microfluidic qPCR system compared to standard qPCR 
methods. Apart from these differences for low abun-
dance species, the 15 species included in the method 
comparison represented 93.84% (range: 44.69–99.93%) 
of the reads from the NGS analysis (Table  2), indicat-
ing that the most dominant members of the microbial 
population in the 21 Raclette du Valais PDO samples 
was covered by both approaches. Samples for which the 
coverage was below the average (S03, S04, S05, S07, and 
S17) all showed above-average relative abundances of L. 
pentosus. In addition, sample S04 also showed an above-
average relative abundance of Lentilactobacillus sunkii. 
Besides these two species, the other species not targeted 

Fig. 3 Comparison of HT-qPCR and 16S rRNA gene amplicon sequencing (NGS). A Logarithmic HT-qPCR data (y-axis) and logarithmic count data 
corresponding to the NGS approach (x-axis). The red line depicts the threshold of 800 copies/μl used for the HT-qPCR data analysis. Shared positive: 
Measurements obtained with both methods. qPCR only/NGS only: Measurements obtained solely by one of the two methods, HT-qPCR or NGS, 
respectively. NGS exclusive: Measurements of taxa by NGS for which no HT-qPCR assay was available. The number of observations for each group is 
given in brackets. B Direct comparison of the relative abundance data of HT-qPCR (copies/μl) on the y-axis and NGS (reads) on the x-axis. The taxa 
that were exclusively detected by NGS (NGS exclusive) were not considered. C Plot of the bias point estimates ± two geometric standard errors 
calculated for the NGS approach using the HT-qPCR approach as a reference method. Only the data of the shared positive measurements were 
used for the bias estimation
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by the HT-qPCR system accounted for only 0.13% (range: 
0.01–0.63%) of the NGS reads. Neither L. pentosus nor 
L. sunkii were included in the HT-qPCR system since no 
validated primers for these species were available. For 
future studies, it would be beneficial to design specific 
primers for these species to enable the quantification 
of these common species in cheese using the HT-qPCR 
approach. L. pentosus has already been isolated from 
milk and cheese [58, 60]. L. sunkii was originally isolated 
from sunki, an unsalted Japanese fermented food, and 
has already been detected in kefir biofilms [61, 62]. How-
ever, to our knowledge, the first detection of L. sunkii in 
cheese was reported only recently in an NGS study of 
Grana Padano cheese [55].

Bias estimation
Over the 21 investigated cheese samples, the two meth-
ods show a high degree of qualitative agreement (detected 
or undetected) and a strong correlation between 
the measurements for the species covered by both 
approaches (Fig. 3 A and B). However, the correlation of 

relative abundance data for the same samples measured 
by two different methods is not a suitable indicator for 
the agreement or disagreement of the methods, since a 
high correlation can be expected for two methods meas-
uring similar properties in the same samples. To examine 
the differences between the two methods in more detail, 
point estimates of the bias for the 15 shared species were 
calculated for the NGS approach using the HT-qPCR 
approach as a reference method (Fig. 3C). A bias estimate 
value above 1 indicates an increased efficiency for NGS, 
while values below 1 indicate a decreased efficiency for 
the measurement of the species compared to the refer-
ence method (HT-qPCR). A strong positive bias was 
observed for L. delbrueckii, Lc. lactis, Levilactobacillus 
brevis, and S. thermophilus, while a strong negative bias 
was observed for L. plantarum, Enterococcus faecalis, 
and P. pentosaceus.

Identification of possible causes for negative bias
Potential biases can be introduced at every step of the 
NGS protocols, from nucleic acid extraction, library 

Table 1 Detected species and average relative abundance for the HT-qPCR and 16S rRNA gene amplicon sequencing (NGS) in 21 
Raclette du Valais PDO cheese samples

The relative abundance of the 21 species detected in more than 30% of the samples by NGS and Lactiplantibacillus paraplantarum exclusively detected by HT-qPCR 
are depicted with the species name; the other 26 taxa were classified as other species

qPCR NGS

Count Avg. abund. [%] SD Count Avg. abund. [%] SD

Lacticaseibacillus paracasei 21 8.26 10.59 21 6.34 9.10

Lactococcus lactis 21 32.79 18.17 21 37.18 20.40

Streptococcus thermophilus 20 42.03 25.51 21 42.24 28.20

Lactiplantibacillus plantarum 20 12.00 14.76 20 3.47 6.56

Loigolactobacillus coryniformis 19 0.60 0.95 19 0.42 0.62

Lentilactobacillus parabuchneri 18 4.96 9.28 20 2.68 6.27

Latilactobacillus curvatus 18 0.77 0.85 19 0.26 0.30

Lactobacillus helveticus 5 3.28 2.48 21 0.63 1.47

Leuconostoc mesenteroides 9 0.31 0.22 14 0.13 0.15

Lactobacillus delbrueckii 4 1.58 1.54 19 0.66 1.89

Levilactobacillus brevis 7 0.47 0.61 16 0.26 0.55

Latilactobacillus sakei 10 0.24 0.25 12 0.10 0.12

Pediococcus pentosaceus 13 0.41 0.43 9 0.03 0.03

Lactiplantibacillus pentosus 0 20 5.21 7.91

Lacticaseibacillus rhamnosus 5 0.24 0.36 13 0.05 0.14

Enterococcus gilvus 0 15 0.03 0.05

Lactiplantibacillus paraplantarum 13 0.38 0.42 0

Lentilactobacillus sunkii 0 10 2.23 5.85

Streptococcus uberis 0 10 0.01 0.01

Latilactobacillus fuchuensis 0 9 0.02 0.02

Enterococcus faecalis 1 0.11 7 0.00 0.00

Paucilactobacillus nenjiangensis 0 8 0.14 0.20

Other species 0 20 0.05 0.06
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preparation, and sequencing, to the bioinformatics analy-
sis [1, 48]. McLaren et  al. [48] have shown, using mock 
communities analyzed by NGS, that the largest influ-
ence on the total bias originates from DNA extraction, 
followed by PCR. In our study, we used the same DNA 
samples for the measurements by both methods, there-
fore bias due to DNA extraction did not contribute to the 
observed total bias. We performed a bioinformatics anal-
ysis to identify possible causes of the decreased efficiency 
of NGS for L. plantarum and P. pentosaceus. The analy-
ses were not repeated for E. faecalis as the bias estimate 
was based on just a single measurement. Alignments 
of the V1–V2 region of the 16S rRNA gene sequences 
from the representative genomes have shown one or 
two nucleotides difference between L. plantarum and L. 
pentosus and only three or four nucleotides difference 
for L. paraplantarum (Supplementary Fig. S1 A, Addi-
tional file  3). Multiple copies of the 16S rRNA gene in 
the representative genomes of L. plantarum and L. para-
plantarum were not identical and contained single nucle-
otide polymorphisms (SNPs). The DAIRYdb (v.1.2.4), 
used by IDTAXA for taxa assignment, contained four 
16S rRNA gene reference sequences spanning the entire 
length of the V1–V2 region, two identical sequences for 

L. pentosus and one each for L. plantarum and L. para-
plantarum (Supplementary Fig. S1 B, Additional file  3). 
The references for L. plantarum and L. pentosus con-
tained only a single nucleotide transition. In the phylo-
genetic tree (Supplementary Fig. S1 C, Additional file 3) 
of the ASVs, two distinct clades could be identified, one 
for L. paraplantarum (purple) and one for L. plantarum 
and L. pentosus (green), including the genomic reference 
sequences and type strain sequences from the DAIRYdb. 
However, considering the high similarity of the reference 
sequences and the intra-strain SNPs in the representative 
genomes, it is likely that the assignment to L. pentosus or 
L. plantarum was based on single nucleotide differences. 
Nevertheless, it remains unclear why L. paraplantarum 
was never assigned by DAIRYdb-IDTAXA in the analysis 
pipeline.

These findings indicate the inability to differentiate L. 
pentosus, L. plantarum, and L. paraplantarum based on 
the selected primers for the V1–V2 variable region of 
the 16S rRNA gene as a source of underestimation bias 
using 16S rRNA gene sequencing. The difficulty in dif-
ferentiating the species of the L. plantarum group has 
already been identified earlier [63–65]. Torriani et al. [66] 
reported that the partial sequences of the recA, dnaK, tuf, 

Table 2 Relative abundance data of species detected by 16S rRNA gene amplicon sequencing

Percentage of reads assigned to species also covered by HT-qPCR (shared) and other species that were not covered by HT-qPCR. The two species, Lactiplantibacillus 
pentosus and Lentilactobacillus sunkii, with the largest overall abundance are shown separately

Shared species Other species L. pentosus L. sunkii

[%] [n] [%] [n] [%] [%]

S01 98.73 13 0.03 3 1.24 0.01

S02 95.06 12 0.09 6 4.83 0.02

S03 91.16 14 0.36 6 8.47

S04 44.69 14 0.44 11 36.27 18.6

S05 90.24 13 0.07 4 6.33 3.36

S06 98.62 12 0.01 5 1.37

S07 92.47 12 0.01 1 7.52

S08 99.93 10 0.02 3 0.05

S09 98.89 12 0.11 3 1.00

S10 99.91 7 0.09 1

S11 94.59 15 0.05 3 5.36

S12 99.31 13 0.09 5 0.33 0.27

S13 94.06 12 0.14 4 5.81

S14 94.76 13 0.23 5 5.01

S15 99.26 10 0.03 5 0.71

S16 98.11 11 0.02 4 1.86

S17 89.88 11 0.04 2 10.08

S18 99.5 11 0.18 3 0.31

S19 95.44 14 0.13 6 4.43

S20 98.24 10 0.63 5 1.12 0.01

S21 97.85 13 0.03 7 2.11
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hsp60, and pheS genes allow a better differentiation of L. 
plantarum, L. pentosus, and L. paraplantarum.

Further investigations were undertaken to clarify 
whether other regions of the 16S rRNA gene would be 
better suited for the differentiation of these species. 
Primers targeting the V3–V4 variable regions of the 16S 
rRNA gene, which were used in recent studies of micro-
bial populations in milk and cheese [30, 67], are even 
more problematic as this region displays 100% nucleotide 
identity for L. plantarum, L. pentosus, and L. paraplan-
tarum in the representative genomes (Supplementary 
Fig. S2, Additional file  3). To prevent biased microbiota 
data, studies in fermented foods that rely solely on spe-
cies identification based on 16S rRNA gene sequences 
should mention this limitation if L. plantarum group 
species are included or, alternatively, try to differentiate 
these species by additional analysis, such as multiplex 
PCR.

Regarding the investigation of the strong bias for P. 
pentosaceus, the potential reasons for PCR bias were 
examined. An alignment of the primer regions showed 
that only the sequence of P. pentosaceus had a potential 
mismatch at position 12 of the NGS_ABCxF27 primer 
(Supplementary Fig. S3, Additional file  3). The wob-
ble base (M) at position 12 of the primer represents an 
adenine or cytosine, while the P. pentosaceus sequence 
at this position contains a thymine. Since it is a single 
mismatch and is not located at the 3′ end, it certainly 
does not prevent amplification but most likely can 
reduce primer efficiency. Notably, in one sample (S14), 
P. pentosaceus was detected by NGS but not by HT-
qPCR. The relative abundance of P. pentosaceus in this 
sample was very low (0.0055%), and the total copies/μl 
of cheese sample S14 was low compared to the other 
samples. Looking at the qPCR raw data, we observed 
weak fluorescent signals in some reactions (techni-
cal triplicates) containing the P. pentosaceus assay; 

Fig. 4 Bias estimates for raw and corrected data sets. A Bray-Curtis dissimilarity of relative abundance data of 16S rRNA gene amplicon sequencing 
(NGS) to HT-qPCR relative abundance data (reference). Depicted are the dissimilarities for the raw and the corrected Lactiplantibacillus plantarum 
group data sets without and with gene copy number normalization (GCN) for the 16S rRNA gene. B Bias point estimates ± two geometric standard 
errors before and after the correction of the assignments for the L. plantarum group species. C Bias point estimates ± two geometric standard 
errors after the correction of the assignments for the L. plantarum group species, with (corr. GCN) and without (corr.) 16S rRNA gene copy number 
correction
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however, it was below the 800 copies/μl cut-off value 
used to improve the signal-to-background noise ratio.

Possible factors for positive bias were not investi-
gated in detail here, but presumably the copy number 
of the 16S rRNA gene and PCR bias have an influence 
on the positive total bias. In addition, it must also 
be considered that even though we have chosen HT-
qPCR as a reference for this comparison, the method is 
not independent of its own inherent bias.

Bias correction
Since the 16S rRNA gene sequencing analysis work-flow 
was not able to differentiate between the three species of 
the L. plantarum group, those were combined into an L. 
plantarum group as a post-analysis bioinformatics cor-
rection. After this correction, the 15 investigated species 
(now including L. pentosus) accounted for 98.81% (range: 
80.96–99.99%) of the reads of the NGS analysis. Only 
samples S04 and S05 had a coverage below the average, 
due to a high relative abundance (18.6 and 3.4%, respec-
tively) of L. sunkii (Additional file 4). Another approach 
that has been investigated for partial correction of PCR 
bias is gene copy number normalization (GCN) of the 
16S rRNA gene.

After the L. plantarum group correction, the Bray-Cur-
tis dissimilarity relative to the HT-qPCR approach was 
decreased for all samples except S08 and S10 (Fig.  4A). 
Samples S08 and S10 were the only samples with a rela-
tive abundance of L. pentosus below 0.05%. Further, the 
Bray-Curtis dissimilarity was lower for the 16S copy 
number correction (black circles) compared to the raw 
data (gray circles) in most samples; only in samples 
S04, S06, S08, and S18 was the Bray-Curtis dissimilar-
ity higher. A lower Bray-Curtis dissimilarity was calcu-
lated for the data with combined corrections for the L. 
plantarum group species and GCN (dark blue triangles) 
compared to the raw data. The bias for L. plantarum was 
noticeably improved for the L. plantarum group correc-
tion, while the bias for the other species barely changed 
(Fig.  4B). The bias changed from a decreased efficiency 
for the measurement of L. plantarum to an increased 
efficiency for the L. plantarum group species. This may 
be partially explained by the proportion of L. pentosus 
since L. pentosus was not measured by HT-qPCR.

For the GCN, the number of reads measured by NGS 
was divided by the average number of copies for each 
species. This approach had only a minor effect on the 
estimated biases (Fig.  4C). The average 16S rRNA copy 
number for the 15 investigated species was 5.3 copies; 
therefore, for species with higher copy numbers, the 
efficiency of the measurement decreased (S. thermophi-
lus, Lc. lactis, L. curvatus, L. sakei, L. delbrueckii), while 
for species with lower copy numbers, the efficiency 

increased. The 16S rRNA GCN had only a major influ-
ence on the bias for species with a high average num-
ber of copies, namely L. delbrueckii (avg. copies: 8.9). 
McLaren et al. [48] have previously reported that the total 
bias was poorly explained by copy number correction for 
the mock communities used in their study. Improving the 
predictions for the composition of microbial communi-
ties based on 16S rRNA GCN, apart from mock com-
munities, is still an unsolved problem [68]. Difficulties 
include, for example, that predictions of 16S rRNA copy 
numbers can be inaccurate and strongly differ between 
prediction tools for taxa with unknown numbers of cop-
ies of the 16S rRNA gene [69]. Other unresolved issues 
include varying copy numbers within the same genus or 
the intra-genomic heterogeneity of the 16S rRNA gene 
[70, 71].

Potential and limitations
The strength of the HT-qPCR approach lies in the fast 
and reliable analysis of samples with a known composi-
tion. The strength of NGS for exploratory purposes is 
very evident, as for example, bacterial species previously 
not associated to the cheese microbiota where discovered 
when NGS was applied to artisanal cheese samples [72]. 
Moreover here we show that overall, the results obtained 
by NGS and HT-qPCR mostly agreed for the relative 
abundance of a set of 15 shared bacterial species in 21 
cheese DNA samples after the bioinformatics corrections 
for the L. plantarum group species. Unweighted pair 
group method with arithmetic mean (UPGMA) linkage 
based on Bray-Curtis dissimilarity clustered the measure-
ments of NGS and HT-qPCR together for most of the 21 
samples (Fig. 5). Only for cheese DNA samples S13, S19, 
and S21 did the results between the two methods diverge.

The present study aimed to evaluate the accuracy of a 
16S rRNA gene amplicon sequencing approach in cheese 
by comparing it to absolute abundance data of selected 
taxa. During the early days of the use of 16S rRNA gene 
amplicon sequencing for the investigation of the cheese 
microbiota, the method was often compared to culture-
dependent methods or qualitative culture-independent 
methods such as denaturing gradient gel electropho-
resis [73–78]. However, advances in NGS technologies 
regarding optimization of the most discriminative 16S 
rRNA gene regions, primers, longer reads, and curated 
databases for specific ecosystems has increased the tax-
onomic resolution to the species level. Comparisons 
with quantitative culture-dependent methods are often 
limited in terms of species level resolution and bacte-
ria in a viable but non-culturable state are not covered. 
Although HT-qPCR provided a limited coverage of the 
whole population in cheese, it has the ability to produce a 
more comprehensive and accurate evaluation with regard 
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to the abundance of the selected bacterial species than 
previous culture-dependent and qualitative culture-inde-
pendent approaches. On one hand, precise identification 
at the species level can be achieved, as with qualitative 
culture-independent methods, and on the other hand, 
absolute abundances can be measured.

Other approaches currently in use include comparisons 
between different protocols, sequencers, and analysis 
pipelines for evaluating new protocols or benchmarking 
[3, 79, 80]. These approaches address a variety of addi-
tional parameters, such as the performance of sequenc-
ing platforms, the influence of primer choice and library 

preparation protocols, as well as data analysis methods. 
These parameters were not within the scope of our study. 
Furthermore, there are aspects that are difficult to assess 
with these approaches, such as the influence of strain-
specific variance in the number of copies of the rRNA 
operon or the species-specific PCR-associated bias [81]. 
Therefore, qPCR was particularly useful as a reference, 
because the influence of primer bias in qPCR reactions 
can be estimated accurately by the efficiency of the PCR 
reaction, and the variance of strain-specific 16S rRNA 
gene copy number per genome was bypassed by the 
selection of single copy gene targets.

Fig. 5 Comparison of HT-qPCR and 16S rRNA gene amplicon sequencing (NGS) data with corrections for Lactiplantibacillus plantarum group 
species and 16S rRNA gene copy normalization. Relative species compositions of the samples measured by HT-qPCR and NGS The samples are 
sorted and clustered according to the UPGMA linkage based on the Bray-Curtis dissimilarity. The relative abundance of the 15 species/groups 
detected by both methods are depicted with the species name; the other taxa were summarized as other species
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A very detailed analysis is possible in our case because 
the microbial communities in the cheese core are quite 
well studied and shaped by the harsh and strictly con-
trolled conditions during manufacturing and ripening 
[59, 82]. The HT-qPCR system used in this study was 
designed to cover frequent and abundant bacterial spe-
cies in cooked, hard or semi-hard cheese with washed 
rinds made from raw milk. The data from 16S rRNA gene 
amplicon sequencing experiments was used to select 
appropriate target species to cover a high proportion 
of the most frequent and abundant bacterial commu-
nity members. However, for other cheese types such as 
soft cheese varieties, the selection of the targets may be 
adapted. Likewise, the application of HT-qPCR to other 
fermented foods would be feasible. Since fermented 
foods such as sauerkraut or kimchi contain a core micro-
biota that partly overlaps with that of the cheese studied 
here [83, 84]. Nevertheless, this would most likely also 
require the development of some additional primer sys-
tems for species that are characteristic for the respective 
fermented food. For other, more complex ecosystems 
such as soil or the microbiota of specific human body 
sites, a comparison with the HT-qPCR approach is cur-
rently more challenging due to the high number of addi-
tional yet poorly defined taxa [85, 86].

Despite the identified bias for several species and the 
differences in 16S rRNA gene copy numbers, there was 
overall high agreement in relative abundances for the 
15 species studied. This was an encouraging finding for 
the use of the NGS approach to study the microbiota of 
cheese.

A known, but sometimes neglected limitation of NGS 
approaches is that relative abundances are of limited 
use without knowledge of the absolute total abundance. 
Consequently, interpretation of the results may be chal-
lenging, especially for differential analyses or compari-
sons between samples with widely varying sampling 
or sequencing depths [19, 79, 87]. This is inherent in 
the method’s principle because in sequencing experi-
ments, the number of counts does not reflect the under-
lying absolute number of molecules in the sample, but 
rather the ratio of counts per OTU or ASV multiplied 
by sequencing depth [87]. For the analysis of cheese and 
milk related samples this information can be relevant as 
illustrated in the following concrete example. First, one 
can consider a scenario in which two LAB species, e.g. 
Lc. lactis and L. fermentum, are present in a natural whey 
culture at relative abundances of 90 and 10%, respec-
tively, which corresponds to an absolute abundance of 
for instance  107 and  106 copies/ml. After incubation, the 
ratio detected by NGS is 50 and 50%. This could be due 
to the growth of L. fermentum to  107 copies/ml or to the 
reduction in the number of Lc. lactis to  106 copies/ml 

due to autolysis or phage infection (while the growth of 
L. fermentum has stagnated). However, without knowing 
the total number of bacteria, distinguishing between the 
two scenarios is statistically more challenging and less 
accurate. In contrast, by using qPCR, we can measure the 
absolute abundance of the species directly without know-
ing the total number of bacteria.

As discussed above, we identified some flaws in taxa 
prediction accuracy using the selected NGS approach. 
Several studies have shown that the accurate identifi-
cation of taxa depends on various factors such as the 
selected 16S rRNA gene region, read length, selected 
primers, sequencing platform, bioinformatics tools and 
reference databases [4, 7–9, 80, 88–90]. The approach 
for the bioinformatic analysis used in this study was 
already optimized by using an ecosystem-specific and 
manually curated reference database and bioinformatics 
algorithms with solid performance according to recent 
benchmarking studies [7, 89]. In the case of the already 
extensively discussed failure to differentiate the species 
of the L. plantarum group, the underlying cause was 
the high similarity of the 16S rRNA gene for these spe-
cies. An improved prediction might only be achieved by 
longer reads or the selection of primers for a different 
target gene.

For NGS approaches, rarefaction curves are used to 
assess whether the sequencing depth is appropriate 
and if rare species/sequences could be identified with 
increasing sequencing depth [4]. However, the success 
to identify rare taxa and problems with a low sensitiv-
ity for certain taxa are often not only determined by the 
sequencing depth, the careful selection of the primers 
for the specific community under study is also important 
[90]. The low sensitivity for P. pentosaceus observed in 
the present study also indicates that species-specific PCR 
primer bias decreases the sensitivity significantly, even 
with an appropriate sequencing depth according to the 
saturation of the rarefaction curves (data not shown).

While qPCR is a well-established method with little 
potential for development beyond HT-qPCR, NGS is still 
experiencing a fast development. In this study, we applied 
single-end amplicon-based sequencing for the V1–V2 
region of the rRNA gene with one analysis pipeline, 
including DAIRYdb and IDTAXA. Despite the limitations 
of NGS targeting only a small region, species annotation 
can be achieved thanks to highly curated databases [9]. In 
the future, amplicon free targeted sequencing by Nano-
pore can further improve the accuracy of NGS reducing 
the biases caused by preferential bindings of universal 
primers and allowing the sequencing of longer regions, 
such as the full 16S rRNA gene [1]. However, we also see 
future applications for HT-qPCR systems for the quan-
tification of bacterial species in complex communities, 
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such as those found in other fermented foods. The 
modular design of HT-qPCR and the possibility of the 
fully automated primer design pipeline SpeciesPrimer 
[91] strongly simplify the challenging process of primer 
design for a high-throughput system and we believe will 
facilitate the adaptation of HT-qPCR to ecosystems other 
than cheese.

Conclusions
HT-qPCR and 16S rRNA gene amplicon sequencing pro-
vided highly comparable results for the qualitative and 
(semi-)quantitative characterization of bacterial com-
munities in cheese. We have pointed out a number of 
differences and biases in measurements for several of the 
bacterial species included in this study. While the species 
assignments of most ASVs has been confirmed by HT-
qPCR, we have also identified challenges in distinguish-
ing L. plantarum from L. pentosus and in the correct 
assignment of L. paraplantarum based on the two vari-
able regions of the 16S rRNA gene. Further, the different 
efficiencies for the measurement of several bacterial spe-
cies were examined, and a potential PCR primer bias was 
identified.

We have highlighted the potential of NGS and HT-
qPCR as complementary methods for both exploratory 
and screening purposes. NGS can be used to provide an 
overview of the microbial community, providing poten-
tial targets of interest for qPCR assay development, 
particularly in less known samples/environments. In 
return, qPCR can confirm species assignments, provide 
absolute quantitative data to better estimate the pro-
portions of the bacterial composition, and draw atten-
tion to potential biases. HT-qPCR can then be used for 
more routine screening in environments with known 
bacterial composition.

Here, we demonstrated the application of NGS and 
HT-qPCR for the study of microbial communities in 
cheese and showed that the results were in substantial 
agreement. However, this approach may also be inter-
esting for the study of the microbiota in other well-
defined ecosystems.
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