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EDITORIAL

Natural toxins: environmental contaminants 
calling for attention
Hans Christian Bruun Hansen1*, Klara Hilscherova2 and Thomas D. Bucheli3 

Abstract 

Biosynthetic toxic compounds from plants and cyanobacteria constitute a chemically diverse family of at least 20,000 
compounds. Recent work with natural toxin databases and toxin characterization shows that the majority of natural 
toxins are polar and mobile, with toxicity ranging from low to very high, while persistence is highly variable. Natural 
toxins may be produced in high quantities—some exceeding 10 g/m2/year—resulting in high environmental loads. 
Recent phytotoxin monitoring indicates that one or more natural toxin is always present in a surface water sample, 
but that concentrations are highly variable often with pulses during rain events. Phytotoxins belong to many classes, 
but often with flavonoids and alkaloids dominating. Likewise, advanced monitoring discovers a wide spectrum of 
cyanobacterial metabolites that are released directly into surface waters during water blooms. Except of the few 
known cyanobacterial toxins, we have very limited info regarding their environmental fate and toxicity.

The 16 papers in this article collection present examples of natural toxin occurrence, properties, fate and toxicity. The 
overarching conclusion is that natural toxins should be monitored and characterized regarding their risk potential, 
and that natural toxins of greatest expected risk should be evaluated as thoroughly as industrial xenobiotics. Cyano-
toxins are well known water contaminants that should be removed for producing drinking water, while for phytotox-
ins the current knowledge base is very limited. We advocate to intensify research on natural toxins, and to address 
the evident knowledge gaps on natural toxin analysis/monitoring, physical–chemical properties and degradation/
pathways, transport modelling, and toxicity. The complex and dynamic interplays between biotic and site condi-
tions such as vegetation, toxic plant densities, climate, soil types, nutrients and radiation, play decisive roles for both 
biotoxin formation and fate. Environmental and toxicological research in biosynthesized compounds extends beyond 
natural toxins, with important perspectives for risk assessment of biopesticides, growth regulators and biomedicine 
(or biologicals collectively) produced by plants and microorganisms.

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Poisonous food
We are picky with what we eat and drink—for good rea-
sons. We wisely avoid death cap mushroom, castor beans, 
and poison hemlock. Drinking water from a lake tainted 
green by cyanobacteria is a no-go. We will even be care-
ful with green potatos, non-cooked chickpeas, beans and 
cassava due to their contents of glycoalkaloids, lectins and 
cyanogenic glycosides. These and many other organisms 

produce secondary metabolites that are strong poisons, 
also to humans. Ames et al. [1] estimated that 99.99% of 
dietary “pesticides” were of natural origin. There are more 
than 20,000 natural bioactive compounds that are toxic 
to humans covering a wide range of modes of action [2]. 
Some show low acute toxicity like the glycoalkaloids in 
potato or isoflavones in clover, medium toxicity as lin-
amarin in cassava and coniin in poisonous hemlock, 
while some are very toxic like ricin in castor beans and 
the cyanotoxin saxitoxin produced by blue-green algae 
(Table 1). Many of these compounds may have or have had 
a function as natural defense chemicals in order for the 
toxin producing organism to compete with other species, 
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and to protect itself against herbivoric and pathogenic 
attacks and other stressors [3, 4].

High loads
Many natural toxins are produced in remarkably high 
quantities with biomass contents up to several mass per-
cent (Table 1). If plants occur as dense stands or in mon-
ocultures the production and hence the potential load 
per land area unit can be massive and much higher than 
seen for other land applied chemicals like pesticides. For 
instance a clover crop may produce isoflavones up to 
220 kg per hectare annually [5], while quinolizidine alka-
loids in lupin may reach annual production of 800 kg per 
hectare [6]. Bracken—a fern with invasive character—has 
been estimated to produce more than 20  kg of its carci-
nogenic illudane glycosides per hectare of land during a 
growing season [7]. The surface scums during massive 
cyanobacterial bloom events have been shown to reach 
maximum values over 100 mg/L of cyanotoxins microcys-
tin [8].

Environmental contaminants
Natural toxins are biosynthesized and released within or 
in close proximity to surface water and groundwater res-
ervoirs (Fig. 1). Thus, cyanobacterial blooms cause direct 
water contamination due to toxic secondary metabolites, 
while exudation from plants and rain wash off transfer tox-
ins to soils from where they leach to surface waters and 
groundwater. A high fraction of natural toxins are polar 
and even charged, with octanol–water partition coef-
ficients, log  Kow, typically in the range from −  5 to 3 [9, 
10]. Hence, they are highly mobile in soils and sediments 

(Table 1). In a pioneering work, Günthardt et al. [11] cre-
ated a database of plants and their toxins for Central 
Europe. Starting with a set of 844 plants and 1586 toxins, 
the authors found that about a third of the toxins would 
classify as persistent, mobile and toxic (PMT) based on 
QSAR estimated properties. This work also showed that 
alkaloids make up the dominating class of plant PMT com-
pounds. The Janssen group compiled a database for sec-
ondary metabolites from cyanobacteria with more than 
2000 entries classified into 13 classes [12]. Cyanotoxins 
are not only microcystins but can cover a high variation 
in chemical diversity and share similar PMT properties as 
plant toxins. Work with the databases has demonstrated 
an embarrassing lack of experimental data on physical 
chemical properties, environmental fate and toxicity for 
most natural toxins, and points to the need of reference 
materials and analytical methods.

They make it to the water
With the large masses of toxins being produced com-
bined with their inherent PMT properties, natural toxins 
are expected to be frequently observed in streams, rivers 
and lakes. Some cyanotoxins have been widely monitored 
showing their frequent occurrence in waterbodies with 
cyanobacterial blooms. The most commonly studied and 
detected cyanotoxin microcystin occurs on average in up 
to tens of ug/L levels in pelagic water outside scums, but 
its concentrations can be up to several orders of magni-
tude higher in surface blooms and scums [8, 13]. Isofla-
vones originating from red clover or soybean dominated 
agricultural land occurred regularly in Swiss and US riv-
ers in concentrations up to 217 ng/L [14, 15]. Mycotoxins, 

Table 1 Examples of natural phyto- and phycotoxins, properties and toxicity

a Max tissue concentration in the producing species: amanitin [73], ricin [74], senecionine [6], coniin [75], solanin [76], formononetin [77], linamarin [78], ptaquiloside 
[79], microcystin LR [80], and saxitoxin equivalent [81]
b Estimated by EpiWin (est) or literature data; senecionine [9], ptaquiloside [82], and microcystin LR [83]
c Acute toxicity, intraperitoneal (mice); from inchem.org if not otherwise stated or literature; ricin [84], coniin [85], not acute toxic; formononetin  EC50 in μM range [86], 
ptaquiloside estimated threshold conc. for 1:106 cancer incidence of arund 20 ng/L [82], saxitoxin [87], microcystin LR [88]; other microcystins [89]

Toxin Toxin class Organism (example) Max tissue 
conc.a mg/g 
DW

Log  Kow
b L/L Mode of toxicity LD50

c mg/kg

Amanitin Cyclo-peptide Amanita phylloides 3 < 0 Hepatotoxin 0.3

Ricin Protein (lectin) Ricinus communis 32 – Cytotoxin 0.02

Senecionine Alkaloid Jacobaea vulgaris 7 1.90 Hepatotoxic, potential carcinogen 50

Coniin Alkaloid Conium maculatum 4 2.6est Neurotoxin 8

Solanine Glycoalkaloid Solanum tuberosum 1 2.0est Cell membrane disruption 30

Formononetin Isoflavone Trifolium pratense 15 2.8est Estrogenic activity –

Linamarin Cyanogenic glycoside Manihot esculenta 30 − 1.4est Cyanide poisoning 1 (HCN)

Ptaquiloside Terpenoide glycoside Pteridium aquilinum 15 − 0.6 Carcinogen –

Microcystin LR Cyclo-peptide Microcystis aeruginosa 13 − 1.2 (pH 7) Hepatotoxin 0.06

Saxitoxin Alkaloid Dolichospermum circinale 4.5 − 2.4est Neurotoxin 0.01
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produced by Fusarium spp. that attack small grain cere-
als during cultivation, were equally found in these surface 
waters [16–18]. More recently, a growing body of evidence 
for the presence of a larger number of phytotoxins from 
various classes of secondary plant metabolites in ground- 
and surface water was presented by various researchers in 
dedicated experimental field studies or surface water mon-
itoring campaigns [6, 19–22]. Likewise, other types of nat-
ural compounds emitted primarily by the anthroposphere, 
such as food ingredients and personal care products, as 
well as human hormones are equally present in surface 
and groundwaters. Thus, caffeine, nicotine, estrogens, pip-
erine, steroids and morphine occur frequently in screening 
studies of surface and groundwaters, e.g., [23–27].

Little is known on toxin transfer from plant to soil; pas-
sive and active release may take place both from above- 
and below-ground parts. Field studies indicate that fast 
and substantial release of toxins may occur during rain 
events generating pulses of toxins that propagates through 
soils to drainage and creek waters [5, 28, 29]. Hence, nat-
ural toxin concentrations and exposure in surface waters 
and in upper groundwater may be highly variable over 
time. This in turn calls for rain-event and flow-propor-
tional sampling as random sampling may not lead to pre-
cise estimates of environmental loads. The multitude of 
toxin producing organisms predicts that natural toxins in 
freshwaters should be found as mixtures with likely finger-
prints of the dominating toxin producers in the catchment 
or the water reservoir [19]. Climate-induced change in 

cropping patterns, fast migration of new (invasive) species, 
faster development of cyanobacterial blooms and appear-
ance of new toxin varieties add to the complexity, e.g., [30].

Regulation, land management and water cleaning
Natural toxins are not currently part of general drink-
ing water assessment and regulation; only the cyanotoxin 
microcystin LR has been considered for inclusion in the 
EU Drinking Water Regulative [31], while WHO recently 
has published guideline values for cyanotoxins in drinking 
water and recreational exposure scenarios [32]. This is in 
strong contrast to food and feed where more natural toxins 
are regulated and regularly monitored, for instance pyr-
rolizidine alkaloids in tea and honey and aflatoxins in nuts 
and seeds [33–35]. More monitoring, fate and toxicologi-
cal data are needed for risk assessment of natural toxins in 
drinking water, and to lay the foundation of a regulation.

Many actions can be taken to control the production 
of natural toxins and their concentrations in water reser-
voirs. Reducing eutrophication and algal blooms in river, 
lake and coastal waters via control of nitrate and phos-
phorus discharges from agriculture and with wastewater 
has high priority for reduction of cyanobacterial blooms, 
and remains as one of the major global sustainability goals 
[36]. Crops can be bred to produce less toxic varieties as 
for alkaloids in lupin, cyanogenic glycosides in cassava, 
isoflavones in red clover, and glucosinolates in rape seed, 
e.g., [37–39], which however also could make plants more 
susceptible to pathogenic attacks. Toxin producing plants 

Fig. 1 Natural toxins from  source to tap. Natural toxin (•) production by cyanobacteria and plants (cropland, forests, pasture, gardens), release and 
transfer to lake water and soils, transport via soils to groundwater and surface water reservoirs from which drinking water is abstracted. Molecular 
structures of ptaquiloside (left), senecionine (middle) and microcystin LR (right) illustrating the polar nature of natural toxins (cf Table 1)
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in forests, grasslands and other non-cropped areas can be 
fought by burning, biological or chemical control or physi-
cally as practiced for bracken, ragwort, giant hogweed and 
Scotch broom, e.g., [40–42]. Finally, when natural toxins 
are already present in the water, they may be removed by 
water treatment at water works, e.g., by means of hydroly-
sis, microbial degradation in sand filters or advanced oxi-
dation methods [43–45]. The major challenge is here for 
private and small scale water abstraction utilities that use 
water from smaller reservoirs and upper groundwaters, 
and employ no or very simple water treatment [46].

Focus on safe water supply—papers in this article 
collection
In 2020 an on-line conference “Natural Toxins—Envi-
ronmental Fate and Safe Water Supply” was conducted to 
address knowledge gaps within the field of natural toxins 
and water quality (https:// natox aq. ku. dk/ news/ news- 2016/ 
final- confe rence/). The conference was organized as part of 
the EU Marie Curie ITN project “Natural toxins and drink-
ing water quality—from source to tap” (NaToxAq) (see Box). 
The present ESEU article collection comprises 16 papers 
almost equally distributed between cyanotoxins and plant 
toxins. A short introduction to the papers is given below.

NaToxAq—fact box 

• Marie Curie ITN consortium 2017—2021 comprising 
22 public and private partners in 7 European countries 
addressing water contamination by phyto- and phyco-
toxins.

• 16 Early Stage Researchers (ESRs)
• Work content:

• Analysis: target, non-target analysis, suspect screen-
ing, effect-directed analysis.

• Monitoring: sampling, groundwater/surface water, 
source allocation, toxin fingerprints, invasive species.

• Toxin phys-chem properties: sorption, degradation 
kinetics, metabolites, QSAR estimation, databases.

• Risk assessment and reduction: human toxicity, envi-
ronmental modelling, risk communication, water 
treatment.

• Outputs and further information: – > https:// natox aq. 
ku. dk/. “Toxin of the week”, 45 research papers, data-
bases of phyto and phycotoxins/metabolites, reports 
and outreach.

Cyanotoxins
The papers concerned with cyanobacterial metabolites 
focus on the characterization of their mixtures in sur-
face water bodies, their fate and stability in the environ-
ment, toxicity and hazard characterization as well as 
strategies for their mitigation. They bring novel infor-
mation on a wide spectrum of compounds, including 
many understudied cyanobacterial peptides or reti-
noids produced by cyanobacterial water blooms.

Li et al. [47] assessed cyanobacterial risk in 108 Swed-
ish lakes based on long term monitoring data. They doc-
umented that nutrients are main drivers for the higher 
cyanobacterial occurrence and also multispecies domi-
nated water blooms in the affected lakes. They suggest 
to set nutrient targets to protect safe water supply and 
recreation. The study of Filatova et al. [48] documents a 
wide diversity of cyanopeptides in three freshwater res-
ervoirs serving as drinking water resources in the U.K. 
The 28 identified cyanopeptides included microcystins, 
anabaenopeptins, aeruginosins, cyanopeptolins, micro-
ginins, some of them reported in UK waters for the first 
time. Natumi et  al. [49] characterized environmental 
stability and photochemical fate of these, and also other 
cyanopeptides (54 total) from common water-bloom 
forming cyanobacteria under environmental conditions. 
Some of them were shown to be relatively stable and thus 
could potentially pose risk in drinking water resources.

Two studies bring information relevant for hazard 
assessment of selected cyanobacterial metabolites. Lovin 
et al. [50] observed species-specific responses in two of 
the most common larval fish models (zebrafish and fat-
head minnow) after exposure to neurotoxin anatoxin-
a, with more pronounced sublethal effects in fathead 
minnows at environmentally relevant concentrations. 
Kubickova et  al. [51] conducted an extensive review 
focused on retinoid compounds that can be also pro-
duced by cyanobacterial blooms. They summarized their 
sources, modes of action and potential adverse effects 
and discussed their implication for risk assessment. This 
paper also introduces the concept of cyanobacterial 
metabolites as anthropo-natural compounds, since they 
are produced by natural organisms, but anthropogenic 
impact causes their high concentrations.

Keliri et  al. [52] investigated a methodology for 
bloom control by comparing the treatment efficiency 
of collected cyanobacterial bloom samples with liquid 
hydrogen peroxide or metallic peroxide granules slowly 
releasing oxidants. They emphasize the importance of 
correct dosing and timing of the treatment to avoid 
undesirable side-effects, including potential release 
of cyanotoxins into the waterbody. A comprehensive 

https://natoxaq.ku.dk/news/news-2016/final-conference/
https://natoxaq.ku.dk/news/news-2016/final-conference/
https://natoxaq.ku.dk/
https://natoxaq.ku.dk/
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review by Schneider and Blaha [53] focuses on the appli-
cability of advanced oxidation processes (AOP) during 
water treatment for removal of known cyanotoxins. It 
provides an overview of different AOP techniques that 
can be used for cyanotoxins degradation and the impact 
of technical parameters, toxin properties and water qual-
ity on its efficacy.

The cyanotoxin papers in this article collection bring 
novel information on some known cyanotoxins and miti-
gation of their presence, but also document that cyano-
bacterial metabolites comprise a much wider spectrum of 
compounds that can be released into surface waters dur-
ing cyanobacterial water blooms. In contrast to relatively 
extensive literature on the few known cyanobacterial 
toxins, such as microcystins, we have only very limited 
information on many of the recently detected cyanobac-
terial metabolites. As documented by the included arti-
cles, some of them can be frequently present and highly 
relevant, but information on their occurrence, fate in the 
environment, stability and toxicity is largely missing.

Plant toxins
The papers presented in this issue on phytotoxins cover 
most of the well-established research domains in envi-
ronmental chemistry. They range from investigations of 
specific environmental distribution and fate processes 
under laboratory conditions, over dedicated field experi-
ments and monitoring campaigns in the real environ-
ment to effect studies and risk assessment.

Wu et  al. [54] compared the stability of ptaquiloside 
in natural groundwater under environmentally relevant 
conditions with laboratory-based models and found a 
good agreement under slightly acid to neutral pH. Under 
such conditions, ptaquiloside was found to prevail for 
months. Schönsee et  al. [55] quantified sorption coef-
ficients to clays and found that for cationic phytotoxins, 
in particular, a high proportion in soils may be attributed 
to these minerals. Field studies on production and occur-
rence of quinolizidine alkaloids and indole alkaloids from 
lupin, and of ptaquiloside from bracken fern were con-
ducted by Hama and Strobel [56], and Garcia-Jorgensen 
et  al. [7], respectively. Both types of phytotoxins were 
produced in considerable amounts, and could be quanti-
fied in soil pore waters in concentrations up to 4.8 µg/L. 
Nanusha and co-workers screened German and Danish 
river waters for phytotoxins by both non-target and tar-
get analysis. They found thousands of overlapping peaks 
between water and plants from local vegetation [57], 
and detected 12 of 150 [58], and 27 out of 160 [59] tar-
gets (mostly for the secondary plant metabolite classes 
of alkaloids, coumarins and flavonoids), in concentra-
tions up to 3 µg/L. Groundwater monitoring with a focus 
on illudane glycosides (including again ptaquiloside) 

was carried out by Skrbic et  al. [60]. No residues were 
found in deep groundwater wells, but for the first time, 
these compounds were detected in some private shallow 
wells. The fact that some phytotoxins are produced in 
high amounts, can be stable for months, mobile, and are 
found in soil pore water, river waters and drinking water 
resources asks for effect studies and (eco-)toxicologi-
cal risk assessment. Griffiths et al. [61] contribute to the 
hitherto still very limited data and report  EC50 values of 
alkaloids lupin and ragwort on Daphnia magna. Accord-
ing to them, there is a potential risk for aquatic organ-
isms in stagnant pond water in vicinity of corresponding 
vegetation.

In summary, the compilation of papers presented here 
on phytotoxins in the environment adds considerably to 
the currently still rather limited literature. Their authors 
convincingly show that the topic is relevant, and that we 
may expect surface water samples in many situations to 
contain one or more natural toxins. Natural toxins show a 
high and fascinating diversity in terms of origin, environ-
mental chemistry and (eco-)toxicology that goes beyond 
our traditional notion of (anthropogenic) environmental 
micropollutants. As such, they finally have truly emerged!

The way forward
In our strive to supply safe drinking water, to provide 
healthy recreational space, and to ensure stability and 
functioning of both cropped and non-cropped eco-
systems, we should look at all relevant contaminants. 
Anthropogenic contaminants monitored in water qual-
ity assessments often have been found to add little to 
explain the toxicity profiles of natural water samples [62, 
63]. Obviously, natural toxins add to the toxicity profiles 
but they are seldomly included among the compounds 
analysed. Thus, future water quality monitoring should 
include selected natural toxins/classes [64, 65]. The fast 
development of high-throughput non-target analytical 
techniques as well as effect-directed screening may help 
to accelerate more comprehensive monitoring schemes. 
Monitoring for natural toxins calls for more work on 
development of analytical methods and sample pretreat-
ment, availability of reference substances and mass spec-
tra as well as databases for toxin prioritization.

A high abundance of natural toxins in natural water 
samples may call for revision of current regulative water 
quality criteria with more emphasis on the total spectrum 
of contaminants in the samples and their inherent toxici-
ties (incl. mixture toxicity) rather than working with fixed 
cut-off criteria for a defined set of anthropogenic chemi-
cals, e.g., as used in the EU Drinking Water Regulative.

Natural bioactive compounds have a long history as 
(bio)pesticides and (bio)medicine (traditional medi-
cine) or as templates for synthetic compounds [66, 
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67]. Examples of biopesticides comprise pyrethrins 
extracted from chrysanthemum, the isoflavanoid rote-
none from roots of certain legumes, and nicotine and 
strychnine alkaloids used as insecticide and mollusci-
cide, respectively [68–71]. Plant-incorporated-protect-
ants such as Bacillus thuringiensis (Bt) toxin in GMO 
crops have been successfully implemented but followed 
by numerous studies of environmental fate and effects 
of the Bt toxin on non-target organisms [72]. We are 
currently seeing a strong interest in use of natural bio-
active compounds—or biologicals—as sustainable, low 
risk and climate-proof alternatives to synthetic chemi-
cals. While biologicals are less regulated today, this is 
to come. This in turn will create a very strong push for 
further work on analysis, monitoring, fate, toxicity, and 
modelling of these myriads of bioactive natural com-
pounds to ensure that proper risk assessments can be 
performed, but also to quantify the bioactivity, modes 
of actions and longevity of the biologicals in soils and 
other environmental compartments.
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