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Abstract

Background: The intestinal microbiota plays a crucial role in protecting the host from pathogenic microbes,
modulating immunity and regulating metabolic processes. We studied the simplified human intestinal microbiota
(SIHUMIx) consisting of eight bacterial species with a particular focus on the discovery of novel small proteins with
less than 100 amino acids (= sProteins), some of which may contribute to shape the simplified human intestinal
microbiota. Although sProteins carry out a wide range of important functions, they are still often missed in genome
annotations, and little is known about their structure and function in individual microbes and especially in microbial
communities.

Results: We created a multi-species integrated proteogenomics search database (iPtgxDB) to enable a
comprehensive identification of novel sProteins. Six of the eight SIHUMIx species, for which no complete genomes
were available, were sequenced and de novo assembled. Several proteomics approaches including two earlier
optimized sProtein enrichment strategies were applied to specifically increase the chances for novel sProtein
discovery. The search of tandem mass spectrometry (MS/MS) data against the multi-species iPtgxDB enabled the
identification of 31 novel sProteins, of which the expression of 30 was supported by metatranscriptomics data.
Using synthetic peptides, we were able to validate the expression of 25 novel sProteins. The comparison of sProtein
expression in each single strain versus a multi-species community cultivation showed that six of these sProteins
were only identified in the SIHUMIx community indicating a potentially important role of sProteins in the
organization of microbial communities. Two of these novel sProteins have a potential antimicrobial function.
Metabolic modelling revealed that a third sProtein is located in a genomic region encoding several enzymes
relevant for the community metabolism within SIHUMIx.
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Conclusions: We outline an integrated experimental and bioinformatics workflow for the discovery of novel
sProteins in a simplified intestinal model system that can be generically applied to other microbial communities.
The further analysis of novel sProteins uniquely expressed in the SIHUMIx multi-species community is expected to
enable new insights into the role of sProteins on the functionality of bacterial communities such as those of the
human intestinal tract.

Keywords: Small proteins (sProteins), SIHUMIx, Human gut microbiome, Proteogenomics, iPtgxDB,
Metatranscriptomics, Metaproteomics, Metabolic modelling

Background
The human intestinal microbiota harbors a great poten-
tial of functions and microbial interactions. It has a cen-
tral role in regulating metabolic processes, modulating
immunity and protecting the host from pathogenic mi-
crobes [1, 2]. Disturbances in the microbial homeostasis
can lead to dysbiosis which is associated with various
diseases (reviewed in [3, 4]). Given the immense com-
plexity of the intestinal microbiota, however, it is still a
challenge to study microbial interactions. Furthermore,
it is well-known that the growth and physiology of bac-
teria in multi-species communities differ from that of in-
dividual strains as a consequence of nutrient
competition and space constraints [5, 6]. The extended
simplified human intestinal microbiota (SIHUMIx) con-
sists of eight common bacterial members of the human
intestine and was initially established in a rat model [7]
and later as a stable microbial community in continuous
flow bioreactors [8, 9]. The reduced complexity com-
pared to the intestinal microbiome allows researchers to
use the in vitro model system for the analysis of meta-
bolic output, interdependences, and interactions within
SIHUMIx under controlled conditions.
For the analysis of bacterial communities, meta-omics

techniques have been developed in the last two decades
and metaproteomics allows direct insights into commu-
nity functions and has been used in several studies of
the intestinal microbiota [10–12]. However, this ap-
proach depends on protein search databases and is thus
limited to the identification of products of previously an-
notated genes. Within a proteome, small proteins (sPro-
teins) with a size of ≤ 100 amino acids (aa) have been
overlooked for a long time, mainly due to challenges in
the correct genome annotation of small open reading
frames (ORFs) [13, 14], more specifically in differentiat-
ing truly coding sProteins from spurious ORFs [15].
Furthermore, the experimental identification of the cor-
responding gene products poses additional technical
challenges [16]. Nevertheless, the interest in sProteins in
prokaryotes and eukaryotes has been steadily rising,
which can be attributed to the fact that sProteins have
been shown to carry out various important functions. In
prokaryotes, for example, they play a role in cell division

(MciZ, SidA, Blr), transport regulation (SgrT, KdpF),
stabilization of membrane-bound enzymes (CydX, PmrR),
signal transduction (MgrB) [14], and multi-resistance [17].
Recently, in a large-scale analysis of human microbiomes,
Sberro and colleagues predicted about four thousand new
sProteins, many of which with previously unknown func-
tions. Their study suggested that sProteins are highly
abundant in the intestinal microbiome and perform di-
verse functions which have not been previously reported.
Interestingly, more than 1000 protein families were pre-
dicted to either contain transmembrane helices and/or be
secreted, suggesting a role in interspecies communication
that may help to shape microbial communities [18]. The
challenge of such sProtein predictions lies in their experi-
mental validation, since experimental detection methods
have not been sufficiently well established. Therefore, it is
important to improve the enrichment and comprehensive
identification of sProteins in multi-species microbial
communities.
In a recent comparison of protocols for LC-MS/MS-

based sProtein analysis, including single-pot, solid-phase-
enhanced sample preparation (SP3), filter-aided sample
preparation (FASP), in-gel- and in-solution proteolytic
cleavage, GelFree, and C8-cartridge enrichment, we dem-
onstrated that C8-cartridge and GelFree enrichment sig-
nificantly increased the number of UniProt annotated
sProteins that could be identified in the SIHUMIx model
system compared to standard proteomics protocols [19].
However, the fundamental issue that prevents a more
comprehensive sProtein discovery remained, namely, that
most databases (and the underlying genome annotations)
are still incomplete and lack the gene annotations for nu-
merous truly expressed and functional sProteins.
Proteogenomics, a research field at the interface of

proteomics and genomics, has the potential to identify
expressed unannotated sProteins and thereby overcome the
problem of missing sProteins in current genome annota-
tions [20]. By integrating multiple reference genome anno-
tation sources, ab initio gene predictions and all potential
in silico ORFs into a single proteogenomics search database
(iPtgxDB), numerous novel sProteins, new start sites, and
expressed pseudogenes could be directly identified in
Bartonella henselae based on MS/MS evidence [21].
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Subsequently, the general applicability of this concept
to other prokaryotes could be established [22, 23].
In this study, we extended the previously developed

iPtgxDB approach towards multi-species application to
enable the identification of novel sProteins from the
SIHUMIx gut microbial community model. The novel
sProteins were screened for expression evidence at the
RNA level using metatranscriptomics and further vali-
dated by comparing the fragmentation pattern of spectra
from experimentally identified peptides with those from
synthetic peptides. The integrated experimental and
bioinformatics workflow for the discovery of novel sPro-
teins can thus be generally applied to other microbial
communities.
Novel sProteins uniquely expressed in the communi-

ties are expected to provide new insights into important
interspecies interactions.

Material and methods
Bacteria cultivation
Strains of the SIHUMIx community
The SIHUMIx community is composed of eight individual
bacterial species, namely Anaerostipes caccae (DSMZ
14662), Bacteroides thetaiotaomicron (DSMZ 2079), Bifido-
bacterium longum (NCC 2705), Blautia producta (DSMZ
2950), Clostridium butyricum (DSMZ 10702), Clostridium
ramosum (DSMZ 1402), Escherichia coli K-12 (MG1655)
and Lactobacillus plantarum (DSMZ 20174) [7].

Single-strain cultivation
All microbial strains were cultivated separately in brain
heart infusion (BHI) medium under anaerobic condi-
tions at 37 °C and continuous shaking at 175 rpm (Sup-
plement Table 1). Single strains of the SIHUMIx
community were cultivated both for genomic DNA
(gDNA) extraction and sProtein analysis. A. caccae, B.
thetaiotaomicron, B. longum, B. producta, C. butyricum,
C. ramosum and L. plantarum were cultivated as single
strains for 48 h. Afterwards, 10 mL bacteria cell suspen-
sion were centrifuged (3200×g; 10 min; 4 °C) and imme-
diately frozen at − 20 °C for gDNA extraction. Selected
single microbial strains (A. caccae, B. thetaiotaomicron,
B. producta, and C. ramosum) were further cultivated in
biological triplicates until they achieved an optical dens-
ity (OD600) between 0.7 and 1.1 (exponential growth
phase). Afterward, 10 mL bacteria cell suspension of
each replicate were centrifuged (3200×g; 10 min; 4 °C)
and immediately frozen at − 80 °C for protein extraction.

Set-up of the in vitro bioreactor system
To discover novel sProteins, the SIHUMIx was cultured
in in vitro bioreactors as previously described [8]. Briefly,
the eight bacterial species were cultivated individually
for 72 h before inoculation of the bioreactor with 1 ×

109 bacterial cells per strain (total cell number = 8 × 109

cells in 250 mL medium). The SIHUMIx community
was continuously cultivated in complex intestinal
medium (Supplement Table 2) and maintained under
anaerobic conditions by continuously gassing the bio-
reactor vessels with nitrogen [8].

DNA isolation, sequencing and de novo genome
assembly
Cell lysis and gDNA extraction were performed with
GenElute™ bacterial genomic DNA kit (Sigma Aldrich,
USA). In brief, the bacteria cell pellets were resuspended
in 500 μL Lysis Solution T. Cell walls of gram-positive
bacteria were destroyed by adding lysozyme (25 mg/mL)
and incubation for 2 h at 37 °C, 400 rpm. For further
breakdown of cell membranes 0.5 g Zirconia beads (0.1
mm) and 3 glass beads (3 mm) were added and 3 cycles
of FastPrep (5.5 ms, 1 min, Fisher Scientific GmbH;
Germany) were performed. After centrifugation at 13,
000g for 5 min the supernatant was mixed with 20 μL
RNAse A solution and incubated for 2 min at room
temperature to remove RNA. All following steps were
performed according to the manufacturer’s instructions.
DNA concentration was measured using a Qubit® 2.0
Fluorometer (Thermo Fisher Scientific, USA), and
gDNA quality was tested using agarose gel electrophor-
esis (Supplement Figure 1).
Genomic DNAs of six SIHUMIx strains (A. caccae, B.

thetaiotaomicron, B. producta, C. butyricum, L. plan-
tarum, and C. ramosum) were sequenced and de novo
assembled using third generation long-read sequencing
technologies. In brief, gDNA was sequenced using Pa-
cific Biosciences (PacBio) SMRT technology on an RSII
device (1 SMRT cell per strain, P6-C4 chemistry) with a
prior enrichment step for fragments > 10 kbp by Blue
Pippin (Sage Science; USA). For B. producta and C.
butyricum, additional long reads were generated with an
Oxford Nanopore Technology (ONT) MinION flow cell.
The ONT library was prepared by a 1D Sequencing kit

(SQK-LSK109) on phenol/chloroform extracted gDNA
[24] and sequenced on a FLO-MIN-106D (R9.4.1) flow
cell. For all six strains, Illumina MiSeq 2 × 300 bp paired
end reads were generated from libraries prepared with a
Nextera XT DNA Library Preparation kit (Nextera; UK).
The de novo assembly was performed with Flye (v.2.4)
[25] using length filtered PacBio RSII subreads (> 5 kb)
of A. caccae, B. thethataiomicron, C. ramosum, and L.
plantarum along with their respective estimated genome
sizes (3.2, 6.2, 6.2, and 4.2 Mbp) or length filtered ONT
subreads (> 8 kbp and > 20 kbp) of B. producta and C.
butyricum with an estimated genome size of 6.1 Mbp
and 4.6 Mbp, respectively. Next, assemblies were polished
by multiple iterations of Quiver from the SMRT Portal
(v.2.3.0.140893) using PacBio Reads (> 1 kbp) until single
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variant level was reached. To correct any remaining small
assembly errors, data from 2 × 300 bp paired end Illumina
reads were mapped to the assembly using BWA MEM
(v.0.7.17) [26] and FreeBayes (v.1.0.0; minimum alternate
fraction: 0.5, minimum alternate count: 5) [27] for 2–3 it-
erative rounds until no further corrections were detected
anymore. Manual start-alignment of the assemblies was
set to 200 bp upstream of the dnaA gene. To verify the
circularity and completeness of the de novo assembly, the
filtered PacBio subreads were re-mapped to the circular
chromosome using graphmap (v.0.5.2) [28]. Structural
variations were called using Sniffles (v.1.0.7) [29] and
manually inspected in the integrated genome viewer [30].
Quality parameters for assemblies were calculated by
QualiMap (v.2.2.1) [31], and final assemblies were
searched by BLASTn (v.2.6.0) against the National Center
of Biotechnology Information’s (NCBI) non-redundant
RefSeq database (downloaded: 30.09.2019). To detect po-
tential plasmids, which could be missed in the Flye assem-
bly due to size selection for long reads, Plasmid SPAdes
(v.3.13.0) [32] was used to assemble the 2 × 300 bp Illu-
mina reads. Cluster of orthologous groups (COGs) of
completely or partially (≥ 5 nucleotides) missed genes
were determined by EggNOG-mapper (v.2) [33].

Metatranscriptomics
Harvested cells were resuspended in 800 μL RLT buffer
(RNeasy Mini Kit, Qiagen) and cell lysis was performed
using a laboratory ball mill. Subsequently, 400 μL RLT
buffer (RNeasy Mini Kit Qiagen) and 1200 μL 96% [v/v]
ethanol were added. For RNA isolation, the RNeasy Mini
Kit (Qiagen) was used as recommended by the manufac-
turer, but instead of RW1 buffer, RWT buffer (Qiagen)
was used in order to also isolate RNAs smaller 200 nt.
To determine the RNA integrity number (RIN), the iso-
lated RNA was run on an Agilent Bioanalyzer 2100 using
an Agilent RNA 6000 Nano Kit (Agilent Technologies,
Germany). Remaining genomic DNA was removed by
digesting with TURBO DNase (Invitrogen, Thermo-
Fischer Scientific, UK). The Ribo-Zero magnetic kit (Epi-
centre Biotechnologies, USA) was used to reduce the
amount of rRNA-derived sequences. For sequencing, the
strand-specific cDNA libraries were constructed with a
NEBNext Ultra directional RNA library preparation kit
for Illumina (New England BioLabs, Germany). To as-
sess the quality and size of the libraries, samples were
run on an Agilent Bioanalyzer 2100 using an Agilent
High Sensitivity DNA Kit (Agilent Technologies,
Germany). Concentration of the libraries was deter-
mined using the Qubit® dsDNA HS Assay Kit as recom-
mended by the manufacturer (Life Technologies GmbH,
Germany). Sequencing was performed on a HiSeq4000
instrument (Illumina Inc., USA) using the HiSeq 3000/
4000 SR Cluster Kit for cluster generation and the HiSeq

3000/4000 SBS Kit (50 cycles) for sequencing in the
single-end mode and running 1 × 50 cycles.

Proteome analysis of the microbial cultures
We applied five different protein extraction approaches,
including two sProtein enrichment methods to improve
the detection of novel sProteins: SP3, FASP, in-solution
proteolytic cleavage, C8-cartridge enrichment, and Gel-
Free enrichment as previously described [19]. In this
study, enrichment with C8-cartridges and GelFree en-
richment led to an increased number of small protein
identifications in SIHUMIx. However, the identified
sProteins differed widely between the two methods. Glo-
bal proteomics methods such as SP3, FASP, and in-
solution cleavage resulted in fewer sProteins identifica-
tions overall, but still added sProteins that were not
identified by the enrichment methods [19]. Thus, we
used enrichment methods and global proteomics
methods for an increased chance of novel sProtein de-
tection. Proteolytic cleavage was performed with either
trypsin or Asp-N (further details are described in the
Supplement information 1).

Mass spectrometry
For each LC-MS/MS run, 5 μL of total peptide solution
was injected into nanoHPLC (UltiMate 3000 RSLCnano,
Dionex, Thermo Fisher Scientific). Peptides were
trapped on a C18-reverse phase trapping column (C18
PepMap100, 300 μm × 5mm, particle size 3 μm, Thermo
Fisher Scientific, or μPACTM Trapping column, Pharma-
fluidics, Belgium), followed by separation on a C18-
reverse phase analytical column (Acclaim PepMap® 100,
75 μm × 25 cm, particle size 3 μm, nanoViper, Thermo
Fisher Scientific, or 50 cm μPACTM column, Pharmaflui-
dics). Mass spectrometric analysis of eluted peptides was
performed on a Q Exactive HF mass spectrometer
(Thermo Fisher Scientific, USA) coupled with a TriVersa
NanoMate (Advion, UK) source in LC chip coupling
mode (Supplement information 2).

Database construction
To investigate the full coding potential of the SIHUMIx
strains, an iPtgxDB was generated for each strain. In
brief, genome annotations retrieved from NCBI’s Pro-
karyotic Genome Annotation Pipeline (PGAP) [34], ab
initio gene predictions from Prodigal (v.2.6.3) [35] and
ChemGenome (v.2.1; with parameters: method: Swis-
sProt space; length threshold: 70 nt; initiation codons:
ATG, CTG, TTG, GTG) [36], and in silico ORFs (> 18
aa) based on a modified six frame translation (also con-
sidering the alternative start codons CTG, TTG, and
GTG), were hierarchically integrated as described before
[21]. For this, the different genome annotations were
collapsed into annotation clusters with the same stop
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codon but different start sites (considering possible lon-
ger proteoforms identifiable by trypsin or Asp-N). Then,
the iPtgxDBs of each individual SIHUMIx species (for a
given protease) were concatenated to represent the full
coding potential of the SIHUMIx culture mix. The NCBI
PGAP annotations based on our de novo assembled ge-
nomes were retrieved between February and May 2019.
For B. longum and E. coli, NCBI RefSeq annotations
from August 2016 and October 2018 were used,
respectively.

Proteomic data analysis
Mass spectrometric data processing was performed
using Proteome Discoverer (v.2.2, Thermo Fischer Scien-
tific, USA) with SequestHT search engine. Search set-
tings were set to trypsin (Full), or Asp-N (Full), max.
missed cleavage sites 2, precursor mass tolerance 10
ppm, and fragment mass tolerance 0.05 Da. Carbamido-
methylation of cysteines was specified as a fixed modifi-
cation. False discovery rates (FDR) were determined
using Percolator [37]. Proteins were considered as iden-
tified when at least one unique peptide was found, the
overall protein FDR was ≤ 0.01, and a SequestHT Score
of ≥ 2 was reached.
In addition, database searches were also performed

with MS-GF+ [38] after converting the raw data to mas-
cot generic file (mgf) format with MSConvert
(v.3.0.19184, ProteoWizard [39]) and using the following
search parameters: precursor mass tolerance, 10 ppm;
fragmentation method, HCD; instrument type, Q Exac-
tive; using fully tryptic or Asp-N peptides only; max
charge, 5+; max missed cleavages, 2; and carbamido-
methylation of cysteine set as fixed modification. The
search was performed against a trypsin- or Asp-N-
specific iPtgxDB of all SIHUMIx species and the peptide
spectrum match (PSM)-level FDR was estimated using a
target-decoy strategy. The search results were filtered to
≥ 2 PSMs and < 0.01 FDR at the protein level.
To increase the stringency for novel protein identifica-

tions from Proteome Discoverer and MS-GF+, an add-
itional annotation resource-dependent threshold of
required PSMs was applied [21, 23]: (Prodigal and
ChemG ≥ 3 PSMs; in silico ≥ 4 PSM) as previously rec-
ommended [20]. We furthermore assessed the proteoty-
picity of the identified peptides using an in-house
version of the original PeptideClassifier software [40]
further extended to support proteogenomics in prokary-
otes [21] and considered peptides that unambiguously
identify one protein (so-called class 1a peptides). For this
study, we also considered 3a peptides, which unambigu-
ously identify one protein sequence that however can be
encoded by different gene models (e.g., duplicated
genes).

Synthetic peptide measurement
To validate the PSMs of identified novel sProteins, syn-
thetic peptides were ordered from Thermo Fisher Scien-
tific, USA. The synthetic peptides were resolved in 1 mL
40% acetonitrile and 1% formic acid and further diluted
to 1 ng/μL. MS/MS spectra were generated by direct in-
fusion with a TriVersa NanoMate (Advion, UK) source
coupled to a Q Exactive HF mass spectrometer (Thermo
Fisher Scientific, further details are described in the Sup-
plement information 3). The matched peptide spectra
were compared to synthetic peptide spectra using NIST
MS Search Program (v.2.0 g; National Institute of Stan-
dards and Technology (NIST), USA) with ± 0.01m/z
precursor and ± 0.02m/z product ion tolerance. Novel
sProteins were considered to be valid if one of their pep-
tides achieved a match score of ≥ 500 and a reverse
match score of ≥ 700.

Metatranscriptome analysis
To map and count the metatranscriptome reads, we
constructed a reference metagenome based on the eight
SIHUMIx species (six de novo assembled genomes and
two RefSeq genomes). The species-specific chromo-
somes and plasmids were concatenated resulting in a
metagenome with nine different chromosomes and four
plasmids. The metagenome annotation database was cre-
ated by combining the six novel genome annotations
(see description above) with the two existing ones. Se-
quencing adapters were trimmed from the retrieved
reads using the cutadapt software (v.1.5) [41]; a subse-
quent quality control was performed using the fastqc
program (v.0.11.2) [42] and the fastx-toolkit (v.0.013).
Reads were aligned to the metagenome using the hisat2
mapping tool (v.2.1.0) [43] and subsequently sorted by
name and genomic location using samtools (v.1.1) [44].
The number of reads that overlap known genes from the
reference annotation was counted using the htseq-count
program (v.0.6.1) [45]. The workflow was implemented
into our universal analysis pipeline (UAP) workflow
management tool [46]. The read counts were normalized
using the transcripts per million (TPM) approach.

sProtein sequence conservation
To estimate the degree of conservation of the identified
novel sProteins, a BLASTp against the NCBI protein
RefSeq database (2020-05-17) for bacteria (taxid:2) was
performed with following settings: e-value of ≤ 10-5, a
minimum sequence identity of 50% and minimum query
coverage of 50%. If multiple homologs were identified,
the closest relative hit to query strain was reported.

In silico structural and functional predictions
Novel SIHUMIx sProteins were further analyzed using
multiple tools. The physicochemical properties
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isoelectric point (pI), aliphatic index and grand average
of hydropathy score (GRAVY score) of the protein se-
quences were calculated using ProtParam [47]. Predic-
tion of protein localization was performed by Phobius
[48], and prediction of potential antimicrobial peptide
(AMP) activity was performed with AMP Scanner (v.2;
probability score: > 0.5: potential AMP; < 0.5: non-AMP)
[49]. Functional domain prediction was performed by
ScanProsite (v.2020_02) [50] and a structural modelling
of sProtein candidates by Phyre (v.2.0) [51].

Microbial community modelling
Automated reconstruction of metabolic networks
Metabolic networks were reconstructed using gapseq
(v.1.0) [52], which infers metabolic pathways, reactions,
and transporter based on genomic data. The default set-
tings were used (bitscore cutoff: 200) and initial gap fill-
ing ensured that growth of the metabolic models with
flux balance analysis was possible given the complex in-
testinal medium (Supplement Tables 2 and 9). To this
end, we derived the molecular composition of the com-
plex intestinal medium by mapping the molecular con-
stituents of the medium to the corresponding in silico
representation of the metabolites.

Metabolic modelling of individual species and microbial
communities
Microbial community modelling was performed as de-
scribed previously [53]. Briefly, metabolic networks of
the individual strains were joined together within a com-
mon extracellular compartment. Coupling constraints
were added in order to associate reaction fluxes of each
species with its corresponding growth rate. For each spe-
cies, we added an artificial biomass metabolite that was
produced by the biomass reaction and exported into the
common extracellular environment. Subsequently, we
added an artificial community biomass reaction that
drained the individual species’ biomass metabolite ac-
cording to the relative abundance of each species in the
community measured experimentally. The inflow of me-
tabolites into the extracellular space was adjusted ac-
cording to the composition of the complex intestinal
medium. For community modelling, the community-
level biomass reaction was set as objective with con-
comitant minimization of total flux (with a coefficient of
10−6 in the optimization function). Similarly, single-
species growth was modeled using the individual species’
metabolic networks, constraining exchange reaction ac-
cording to medium composition and optimizing growth
rate with concomitant minimization of total flux. For
comparison of fluxes between single growth and com-
munity growth, all fluxes were scaled by dividing fluxes
with the growth rate (i.e., growth rate of the species in
single growth or within the community). To study the

role of each reaction for community growth, reactions
were knocked out by constraining upper and lower
bounds to zero and repeating the optimization.
To study the relevance of sProteins for microbial com-

munity metabolism, we identified all enzymes within a
15,000-bp window of each sProtein that showed differ-
ential abundance in community growth for each species
and identified the reactions that they catalyze. Only en-
zymes that catalyzed reactions that had non-zero flux in
either single or community growth were considered.

Statistical analysis and visualization
All statistical analyses and plots were performed/created
in R (v.3.4.0) [54] using ggplot2 [55]. Circular plots were
created with Circos [56]. Stacked bar charts were created
using GraphPad Prism (v.8.4.1).

Availability of data and materials
PacBio, ONT, and Illumina data were uploaded to NCBI’s
short read archive (SRA) and can be accessed via the fol-
lowing BioProject and sequence accession numbers:
PRJNA523317, CP036345 (A. caccae); PRJNA531376,
CP039126 (B. producta); PRJNA523323, CP036346 (C.
ramosum); PRJNA531377, CP039121, and CP039122 (L.
plantarum); PRJNA543750, CP040530, and CP040529 (B.
thetaiotaomicron); PRJNA544389, CP040626, to CP040629
(C. butyricum). The iPtgxDBs can be downloaded from
https://iptgxdb.expasy.org/. Metatranscriptomics data can
be accessed via the following Bioproject: PRJNA655119;
proteomics data (both from individual single-strain cultures
and the SIHUMIx grown in the bioreactor have been
uploaded to PRIDE and can be assessed under PXD020005.

Results
Sequencing and de novo genome assembly of SIHUMIx
species
For two of the eight SIHUMIx strains, i.e., B. longum and
E. coli, fully assembled, complete genome sequences were
available at NCBI’s RefSeq database. In contrast, for the
remaining six species, only fragmented Illumina assem-
blies (between nine contigs for Lactobacillus plantarum to
207 contigs for Clostridium butyricum) had been depos-
ited (Supplement Table 3). To create an optimal basis for
our subsequent proteogenomics and functional genomics
analyses, we first sequenced and de novo assembled the
genomes of these six strains using a combination of long
reads from the PacBio and ONT platforms and Illumina
short reads (Fig. 1). On average, these six complete ge-
nomes contained ~ 69 kbp additional sequence informa-
tion per genome (ranging from 8.3 kb for A. caccae to
169.3 kb for B. producta) and 94 more genes, which corre-
sponded to roughly 60 protein coding sequences (CDS;
between 3 for C. ramosum and 198 for B. producta)
(Table 1), including up to 49 annotated sProteins in a
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Fig. 1 sProtein discovery and validation workflow in a multi-species model: SIHUMIx strains were grown as single cultures for genomic DNA
isolation followed by long read sequencing and proteomics measurement. The de novo assembled, complete genomes were used as a basis to
create a minimally redundant multispecies-iPtgxDB containing novel sProtein candidates. The SIHUMIx community was cultivated in chemostatic
bioreactors and sampled for subsequent proteomics and metatranscriptomics measurement. sProteins of single cultures and the community
cultured SIHUMIx strains were enriched and measured by LC-MS/MS. Searching MS/MS spectra against the multi-species iPtgxDB allowed to
identify novel sProteins which were further screened for metatranscriptomics expression evidence of the respective genes and validated with
synthetic peptides
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single species (B. producta) that otherwise would have
been completely or partially missed (Table 1). Among the
364 missed proteins, 259 had an assigned COG category.
In total, 92 of these (35%) fell into the COG-category “rep-
lication and repair” (including 59 transposases), 24 (9%)
into “cell wall/membrane/envelope biogenesis,” and 6
(1%) into “signal transduction mechanisms” which are of
particular relevance in the context of multi-species cultur-
ing (see Supplement Table 4). These differences are illus-
trated for B. producta and C. butyricum (as an example of
a strain with additional plasmids) in Fig. 2, and for the
remaining strains in Supplement Figure 2.

Generation of a multi-species iPtgxDB that covers the
entire coding potential and its characteristics
To enable the identification of novel sProteins in the
SIHUMIx mixture, we relied on a metaproteogenomic
approach and an adaptation of our integrated proteoge-
nomics search database approach (iPtgxDB; https://
iptgxdb.expasy.org) [21] to this multi-species model.
First, individual iPtgxDBs were created for each SIHU-
MIx genome sequence. By hierarchical integration of

reference genome annotations like NCBI RefSeq, ab
initio gene prediction algorithms like Prodigal [35] and
all in silico ORFs predicted by a modified six-frame
translation considering alternative start codons, the
iPtgxDBs cover the entire protein coding potential of a
genome down to a user-selectable protein size threshold
(here 18 aa). To achieve minimal redundancy, only the
protein sequence of the annotation source with the high-
est hierarchy (e.g., RefSeq database) was added in full
length. All additional annotations/predictions which
imply longer (extensions) or shorter (reductions) protein
sequences represent variants of this protein annotation
cluster [21], and their sequence up to the first proteo-
lytic cleavage site was added to the iPtgxDB. For this
reason, individual iPtgxDBs have to be generated for
each protease, in our case for trypsin and Asp-N. The
extension of the PeptideCassifier concept [40] to these
protein annotation clusters allows to readily identify
class 1a peptides (unique to one DB entry), or less fre-
quent class 2a, 3a, or 3b peptides. These are either
unique to a subset of sequences of one annotation clus-
ter (2a), unique to a protein sequence that is encoded by

Table 1 Comparison of six de novo assembled SIHUMIx strains to NCBI RefSeq data

Species Complete de novo genome assembly Missed in RefSeq entry

Genome size Plasmid(s) Genes CDS Bp Genes CDS CDS ≤ 100aa

A. caccae 3,590,716 – 3513 3440 8306 14 10 3

B. producta 6,245,307 – 5766 5678 169,296 238 198 49

B. thetaiotaomicron 6,271,157 33,036 5027 4940 49,610 61 56 5

C. butyricum 3,921,278 (Chr. 1) 6059 (Pl. 1) 4269 4142 115,260 169 74 12

770,199 (Chr. 2) 8060 (Pl. 2)

L. plantarum 3,242,936 7218 3151 3064 47,954 48 23 11

C. ramosum 3,247,604 – 3108 3025 24,277 35 3 0

Fig. 2 Comparison of complete, long read-based de novo assembled genomes (outer circle showing the size of the bacterial chromosome and
plasmids) and the corresponding fragmented, short read-based assemblies. Blue bars denote assembled contigs; missed CDS are shown in red
(grey shaded inner circle). a B. producta. b C. butyricum
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different gene models (3a; mainly duplicated genes), or
mapping to multiple proteins encoded by different genes
(3b; ambiguous identification) [21]. This classification al-
lows to quickly filter unambiguously identified and so
far missed sProteins. It can also identify and filter out
peptides that arise from proteolytic maturation events of
annotated RefSeq proteins that might erroneously imply
a novel sProtein. Next, the individual iPtgxDBs were
concatenated. Importantly, through this careful hierarch-
ical integration, more than 93% of the proteins included
in the iPtgxDB, which covers any potentially missed
sProtein, are theoretically MS-identifiable by unique
peptides (class 1a). While the iPtgxDB is about 26 times
larger compared to RefSeq databases, its search space is
still smaller than a six-frame translation of the human
genome, which would create a search database 70 times
larger than the UniProtKB [20]. The percentage of anno-
tated sProteins in the respective RefSeq genome annota-
tions for the individual SIHUMIx species varied between
4.9 and 12.5% (Table 2). In contrast, the percentage of
potentially encoded sProteins increased to almost 90% in
the final iPtgxDB (see Table 2 for trypsin, Supplement
Table 5 for Asp-N).

Identification of novel sProteins
After anaerobic cultivation of the SIHUMIx community,
the bacterial cells were harvested and processed using
metaproteomics and sProtein enrichment protocols. We
used the published data set from Petruschke et al., with
the five different protein extraction approaches, (i) SP3,
(ii) FASP, (iii) in-solution proteolytic cleavage, (iv) C8
cartridge enrichment, and (v) GelFree enrichment using
trypsin as protease [19]. In this study, we performed
additional proteomics analysis for three protocols (i)
FASP, (ii) C8-cartridge enrichment, and (iii) GelFree en-
richment with the protease Asp-N to further increase
the detection of novel sProteins that cannot be identified

with trypsin [57, 58]. All LC-MS/MS data were searched
against the multispecies iPtgxDB (Fig. 1).
In total, 6576 proteins were identified, of which 904

(13.7%) were sProteins (Fig. 3a). In total, 253 of these
sProteins were not contained in the NCBI RefSeq anno-
tation, and hence represent the entire pool of potential
novel sProteins. In line with recommendations to exer-
cise caution when calling novel sProteins [20, 21, 23], we
added an additional filtering regimen. To increase the
stringency, we applied a prediction resource quality-
based filtering step and required at least 3 PSMs for
Prodigal and ChemGenome predictions and at least 4
PSMs for in silico ORF predictions. This resulted in a re-
duction down to 31 novel sProteins (Table 3). Twenty-
eight of these novel sProteins were identified by trypsin
and 16 by Asp-N. Although the vast majority of the 16
novel sProteins identified by Asp-N were also identified
by trypsin (81%), we were still able to identify three
novel sProteins uniquely with Asp-N (BP15, BT2, and
CR3, Table 3, Supplement Figure 4) that would other-
wise have remained undiscovered (Fig. 3b). Moreover, in
several cases, the Asp-N search results added additional
peptides and PSMs to support identification of a novel
sProtein identified with trypsin, e.g., for AC1, BP4, and
BP10 (Table 3, Supplement Figure 4). An Asp-N cleav-
age resulted in slightly longer peptides (average of 17.9
aa vs. 14.1 aa for trypsin). The sProtein BT2 was identi-
fied as full protein, as its sequence did not harbor any
proteolytic site for Asp-N. In contrast, it contained 13
tryptic cleavage sites, which would produce fragments
of maximally 6 aa (avg. length 2.8 aa), i.e., the likely
reason why BT2 was not observed in the tryptic
digests. A visualization of the PSM distribution for
several representative novel sProteins is shown in
Supplement Figure 4.
A similarity search revealed that eight of the novel

sProteins had no homolog in any other prokaryote

Table 2 Composition of the multi-species iPtgxDB (trypsin)

Strains RefSeq
proteins

RefSeq
sProteinsa

Extensions to
RefSeq sProteinsa

Additional
Prodigal
sProteinsa

Additional
ChemGenome
sProteinsa

Additional in
silico sProteinsa

Total iPtgxDB
annotation
clusters

Total iPtgxDB
sProtein
annotation
clustersa

A. caccae 3440 295 129 106 2398 78,654 90,548 81,582

B. longum 1728 85 55 175 1338 43,506 59,156 45,159

B. producta 5682 577 305 306 3749 140,819 165,184 145,756

B. thetaiotaomicron 4941 463 274 279 3814 128,815 146,729 133,645

C. butyricum 4148 391 131 187 282 68,564 75,453 69,555

C. ramosum 3025 281 131 110 218 52,203 56,936 52,943

E. coli K-12 4411 551 295 128 3485 106,268 123,548 110,727

L. plantarum 3067 384 176 92 1611 72,764 80,137 75,027

Combined iPtgxDB 30,442 3027 1496 1383 16,895 691,593 797,691 714,394
aDue to our focus on novel sProtein discovery, we list the respective number of sProteins for a given category
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(Supplement Table 6). For 12 sProteins, a homologous
hypothetical protein in the same species and for 13 sPro-
teins a hypothetical protein in another species was identi-
fied. Additionally, the similarity search identified one
sProtein as identical to a recently annotated RefSeq pro-
tein (peptide chain release factor 2) in B. thetaiotaomicron
VPI-5482, a strain closely related to our B. thetaiotaomi-
cron strain DSM 2079, and whose full genome sequence
(NCBI acc: NC_004663.1 (chromosome); NC_004703.1
(plasmid)) had been reported in March 2020. Accordingly,
this sProtein was removed from the list of novel sProteins.
Furthermore, BP13 exhibited high homology to the N-
terminus of a TetR/AcrR family transcriptional regulator
in B. producta. However, based on a point mutation that
introduced an internal stop codon, the encoding gene was
annotated as a pseudogene in the NCBI annotation, which
we did not integrate here due to our primary focus on
novel sProtein discovery. Interestingly, the very high spec-
tral count for this protein (Table 3), which was exclusively
observed in the N-terminal 70 aa up to the internal stop
codon, provided proteomic proof that BP13 represents a
highly expressed proteoform of this pseudogene (Supple-
ment Figure 5). Accordingly, BP13 remained on the list of
novel sProteins (Table 3).
The eight different bacteria species of the SIHUMIx

community were not equally represented during cultiva-
tion [9]. We first compared the relative number of de-
tected proteins (Fig. 4a). Total proteins, sProteins, and

sProteins missed in the respective NCBI RefSeq annota-
tions were identified for all eight SIHUMIx members,
with B. thetaiotaomicron, B. producta, and E. coli show-
ing the highest relative number of proteins. After apply-
ing the stringent PSM filtering criteria, this number was
reduced to 31 novel sProteins. All identified sProteins
belong to B. producta, B. thetaiotaomicron, C. ramosum,
A. caccae, and B. longum. The comparison of relative
protein abundances based on normalized spectral abun-
dance factor (NSAF) [59] showed a similar result with
the highest relative protein abundance observed for B.
thetaiotaomicron in the case of total proteins and sPro-
teins, and B. producta in the case of not annotated sPro-
teins and novel sProteins (Fig. 4b).
Metatranscriptome sequencing of the SIHUMIx commu-

nity was performed to assess whether the expression data
for the genes encoding the respective novel sProteins sup-
ported their identification at the protein level. Thereby,
transcriptomic evidence for 30 out of 31 novel sProteins
was detected. The corresponding gene models for the two
novel sProteins (BP4, BP14) exclusively identified by 3a pep-
tides, are localized in duplicated regions; hence, the average
of multi-mapping reads was added to the number of
uniquely mapped reads. The abundance of novel sProtein
gene transcripts were ranging from lower levels (6 sProteins
below a TPM of 10) to high levels (6 sProteins with a TPM
around 1000) indicated by the red dots in Fig. 5 while the
pseudogene BP13 shows the highest expression level.

Fig. 3 Computational filtering strategy to identify potential novel sProteins. a The proteomics data was searched against the multi-species
iPtgxDB using SequestHT and MS-GF+ separately. A stringent protein FDR < 0.01 was applied resulting in 6576 total proteins. In total, 904 of
these were sProteins of which 253 were not contained in the NCBI RefSeq annotation. An additional prediction resource quality filter (Prodigal
und ChemGenome predictions ≥ 3 PSMs; in silico ORF prediction ≥ 4 PSMs) resulted in 31 novel sProteins. b Comparison of the number of novel
sProteins identified using trypsin and Asp-N as proteolytic enzymes before LC-MS/MS
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Several factors may prevent the identification of proteins
even with highly transcribed genes [60], but overall, there is
a good correlation between gene expression levels and pro-
tein identification rate [60, 61].

Validation of novel sProteins
To validate the expression of the novel sProteins, the corre-
sponding PSMs were further examined. For each identified
peptide uniquely assigned to a sProtein, a synthetic peptide
was tested. Mass spectra were acquired for the synthetic
peptides and then compared with the MS/MS spectra
assigned to the PSMs using NIST MS search, as described

before [62]. If both spectra showed a high level of identity
with a match score ≥ 500 and reverse match score ≥ 700,
the PSM was considered verified as shown for the novel
sProtein BT6 encoded by B. thetaiotaomicron (Fig. 6). If
one unique peptide per sProtein was verified, the sProtein
was considered validated. With this strategy, 25 out of 31
novel sProteins were validated (Supplement Figure 3).
Among 6 candidates that could not be validated by spectra
comparison, only one was rejected based on the score
thresholds. The remaining 5 could not be validated because
the synthetic peptides could not be ionized and therefore
no spectra could be acquired for spectra comparison.

Table 3 Overview and identification source of 31 novel sProteins

Abbreviation Species Prediction source Size [aa] Trypsin Asp-N

Peptides PSMs Peptides PSMs

AC1 A. caccae Prodigal 47 1 5 2 11

AC2 A. caccae Prodigal 49 1 5 0 0

AC3 A. caccae Prodigal 57 3 25 0 0

BL1 B. longum In silico 57 1 5 0 0

BP1 B. producta Prodigal 39 4 12 2 8

BP2 B. producta Prodigal 45 1 5 0 0

BP3 B. producta Prodigal 45 1 19 0 0

BP4 B. producta Prodigal 46 3 12 2 20

BP5 B. producta Prodigal 48 1 11 0 0

BP6 B. producta Prodigal 49 4 25 0 0

BP7 B. producta Prodigal 52 2 9 2 4

BP8 B. producta Prodigal 57 2 12 2 3

BP9 B. producta Prodigal 58 3 23 0 0

BP10 B. producta Prodigal 61 2 50 4 209

BP11 B. producta Prodigal 64 2 6 0 0

BP12 B. producta Prodigal 66 5 34 4 11

BP13 B. producta Prodigal 70 6 547 5 405

BP14 B. producta ChemGenome 81 6 55 2 5

BP15 B. producta ChemGenome 87 0 0 1 4

BT1 B. thetaiotaomicron ChemGenome 32 1 5 0 0

BT2 B. thetaiotaomicron Prodigal 36 0 0 1 16

BT3 B. thetaiotaomicron Prodigal 53 2 3 0 0

BT4 B. thetaiotaomicron Prodigal 55 1 19 1 4

BT5 B. thetaiotaomicron In silico 57 4 30 2 10

BT6 B. thetaiotaomicron Prodigal 57 3 115 5 36

BT7 B. thetaiotaomicron Prodigal 61 1 8 2 19

BT8 B. thetaiotaomicron Prodigal 68 2 35 0 0

CR1 C. ramosum In silico 20 1 4 0 0

CR2 C. ramosum In silico 31 2 18 0 0

CR3 C. ramosum Prodigal 44 0 0 1 3

CR4 C. ramosum Prodigal 58 7 53 3 13
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Novel sProteins: SIHUMIx community vs. single strain
cultivation
To analyze a potential community associated function, we
investigated the protein expression of our 25 validated
novel sProteins in SIHUMIx, which were cultivated as sin-
gle strains. The single strains were harvested in growth
phase and processed using the same proteomic

protocols that led to the identification of the novel
sProteins. However, only trypsin was used as a proteo-
lytic enzyme. The MS/MS data was again searched
against the species-specific iPtgxDBs using SequestHT
and MS-GF+. Using the same stringent multi-step fil-
tering criteria as described above, we were able to iden-
tify and confirm the expression of 18 novel sProteins

Fig. 4 a Comparison of the SIHUMIx composition based on the number of proteins identified [%] in four categories with the total protein
number for the respective subset shown on top of each bar and b their normalized spectral abundance factor (NSAF, [%])

Fig. 5 Shows the average of transcripts per million (TPM) normalized gene counts (in log-scale) and the density distribution of annotated and
novel sProteins after metatranscriptome sequencing of the SIHUMIx community. After calculation of TPMs for each sample and species separately,
all four samples have been averaged for visibility reasons. TPMs for the sProteins located in duplicated regions (BP4 and BP14) were averaged
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that had been identified in the community culture and
which were also expressed in the single-strain cultures.
One novel sProtein (CR1) could not be compared, be-
cause it was identified using Asp-N as proteolytic en-
zyme. Interestingly, 6 novel sProteins (BP3, BP5, BP8,
BP11, BP12, CR2) were uniquely expressed in the
SIHUMIx community (Table 4).

Characteristics of identified SIHUMIx sProteins
Characterization of the six novel sProteins exclusively
identified in the SIHUMIx community (Table 4) revealed
that the majority of them (BP5, BP8, BP12, CR2) exhib-
ited a high pI (> 8.0), likely resulting in a strong positive
net-charge of these molecules. The pI of the other two
sProteins (BP3 and BP11) was close to 7.0. Together
with the negative GRAVY score of all sProteins,

indicating a hydrophilic character, this points towards
good water solubility of these candidate sProteins. Des-
pite the fact that no signal peptides were predicted for
any of these protein sequences, the AMP Scanner soft-
ware [49] predicted antimicrobial peptide activity for
CR2 and BP12, which usually occur in free solution.
Many of these proteins are unstructured upon inter-
action with biological membranes [63], which fits well to
the structure prediction of CR2. The physicochemical
parameters and functional predictions of all novel sPro-
teins are listed in Supplement Table 6.

Potential role of sProteins in microbial community
metabolism
We used metabolic microbial community modelling to
elucidate a potential association between sProteins

Fig. 6 Validation of sProtein identification with synthetic peptides. a The novel sProtein BT6 (57 aa) predicted by Prodigal and detected with the
unique, fully tryptic peptide RSQLEHEVSVAQER is shown, as well as b the MS/MS spectrum which was assigned to the peptide spectrum match
(PSM) by the search algorithm. c The unique peptide was synthesized and a MS/MS spectrum was generated. d Both spectra were compared
using NIST’s MS search software, which resulted in a match factor of 814 and reverse match factor of 924, well above the cut-off values, thereby
confirming expression of the novel sProtein BT6
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differentially abundant in community vs. single culture
growth and enzymes that can be found adjacent to them
in the genome. To this end, we used gapseq to recon-
struct metabolic networks from the sequenced genomes
of each strain and used constraint-based metabolic mod-
elling to study differences in metabolic activity between
single culture and community growth (Supplement
Table 7). Thereby, we predicted metabolic activities (i.e.,
reaction fluxes) for each species either growing in isola-
tion or in community.
Among the six sProteins that showed differential abun-

dance in community vs. single culture growth, four were
located within a 15,000-bp window of seven enzymes that
were active in single culture or community growth (see
Supplement Table 8). These enzymes participate in ten re-
actions, five of which show differential activity between
single culture and community growth. Of these five, all
occurred close to the sProtein BP5 in the metabolic net-
work of B. producta. For three of them, it was predicted
that they are active in single culture growth (“rxn00003,”
“rxn00203,” and “rxn00898”) but inactive in community
growth while two are inactive in single culture growth but
active in community growth (“rxn15021” and “rxn15467”).
These enzymes are part of the isoleucine biosynthesis
from threonine and the TCA cycle. To further investigate
the role of the enzymes activated in community growth,
we re-performed the community modelling after an in
silico knockout of the corresponding reactions (see “Ma-
terial and methods”). In particular after knockout of
rxn15467, a (R)-2,3-dihydroxy-3-methylbutanoate hydro-
lyase that catalyzes the second-to-last step in valine bio-
synthesis, we observed a considerable change in the
predicted patterns of metabolite exchanges between B.
producta and the other bacterial strains in the microbial
community (Fig. 7). Knockout of rxn15467 was predicted
to lead to an overall reduction of the production of metab-
olites for other community members by B. producta, while

the consumption of metabolites was increased. Thus, pro-
duction of the short-chain fatty acid acetate as well as pro-
duction of ATP from AMP was reduced. Moreover, the
uptake of choline along with the production of betaine
was increased. These simulation results support the no-
tion that BP5 and the enzymes located in its genomic
neighborhood play an important role in the interaction
between B. producta and the other member species of
SIHUMIx.

Discussion
sProteins carry out numerous important functions
[14, 16, 64]. Historically, they have often been over-
looked, as appropriate experimental enrichment strat-
egies are required for their identification [19, 65, 66]
and due to a number of computational challenges.
These challenges include the low number of unambi-
gous and MS/MS detectable peptides per sProtein,
the need to apply stringent FDR cut-offs (see below)
and, even more fundamentally, the unsolved problem
of accurate and comprehensive ab initio gene predic-
tion. While the minimal length cutoffs (between 50
and 100 aa for CDSs) applied by most gene predic-
tion tools effectively minimize the inclusion of spuri-
ous short ORFs [15], they do miss a number of truly
coding sProtein genes. Advances in proteomics and
ribosome profiling [67], the two major technologies
for a large-scale identification of missing sProteins,
have further fueled the interest in this important pro-
tein class both in bacteria [21, 68, 69] and in humans
[70]. Notably, Sberro et al. predicted thousands of
novel sProteins based on a metagenomics study of
human-associated microbiomes, several of which play
important roles in host-microbiome and bacteria-
bacteria interactions [18]. Using metaproteomics, they
could detect 25 sProteins [18]. The challenges in de-
tecting sProteins using standard proteomics protocols,

Table 4 Physicochemical, functional, and structural prediction of novel sProteins exclusively identified in the SIHUMIx community
culture experiments.

Abbr. Size [aa] pI Aliphatic index Gravy score AMPs (prediction
probability)

Localization (posterior
probability)

Structure
prediction

CR2 31 10.95 62.9 − 1.2968 AMP (0.992) Cytoplasmic
(0.646)

BP3 45 6.11 56.4 − 1.7111 Non-AMP (0.002) Cytoplasmic
(0.534)

BP5 48 9.87 48.8 − 1.7083 Non-AMP (0.001) Non-cytoplasmic
(0.539)

BP8 57 10.01 80.4 − 0.5320 Non-AMP (0.002) Non-cytoplasmic
(0.663)

BP11 64 6.68 68.4 − 0.6781 Non-AMP (0.053) Non-cytoplasmic
(0.596)

BP12 66 9.64 70.9 − 0.6409 AMP (0.986) Non-cytoplasmic
(0.634)
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the lack of an adjusted protein search database and
the intra- and inter-species redundancy of protein se-
quences may have hindered the identification of a
representative number of sProteins in complex micro-
bial communities [19, 71].
The combination of proteogenomics with metaproteo-

mics (metaproteogenomics) has recently been shown to
be a valuable tool for microbiome research [72]. To tar-
get novel community-relevant sProteins, we here applied
a metaproteogenomic approach on a defined moderately
complex model community of the human gut, consisting
of eight bacterial species. For this, we extended our pre-
viously developed proteogenomics approach to identify
novel sProteins in a single prokaryote [21] to the SIHU-
MIx model system. We first created complete genomes
for 6 SIHUMIx strains for which only fragmented gen-
ome assemblies existed. This approach provides an opti-
mal basis for comprehensive sProtein discovery and
downstream functional genomics. Recently, it had even
identified several essential genes missed in an incom-
plete assembly of Pseudomonas aeruginosa MPAO1
[73], the widely used parental strain of a transposon in-
sertion library. The careful hierarchical integration of
reference genome annotations, ab initio gene predictions
and in silico predictions into a minimally redundant yet
highly informative iPtgxDB ensured that 90% or more of
all MS/MS identifiable peptides uniquely point to one
protein entry in the search database (a class 1a peptide)
[40]. This percentage amounted to 93% in the combined,
eight species iPtgxDB (Supplement Table 9) and largely
facilitates downstream data analysis. The optimized, lean
database structure that captures the entire protein

coding potential of a completely sequenced genome is
crucial to reduce type II error in peptide identifications,
because of reduced FDR sensitivity for large protein da-
tabases, as usually encountered in metaproteomics [74–
76].
We applied both a stringent, multi-tiered FDR control

[21], suggested by [20], as well as subsequent validation
steps (see below). The PSM FDR level was set to result
in a 1% protein FDR. This set-up resulted in 6576 total
protein identifications and 904 sProteins of which 253
sProteins were not contained in the NCBI RefSeq anno-
tation. We additionally required 2, 3, or 4 PSM hits for a
reference annotation, Prodigal and ChemGenome ab
initio gene prediction, or an in silico gene prediction, re-
spectively, i.e., increasing evidence for less reliable pre-
diction sources. Accordingly, this step reduced the
number of novel sProteins from 253 to 31, effectively re-
moving “one-hit wonders” (proteins identified with 1
peptide and a single spectrum). Notably, Prodigal con-
tributed most novel sProteins, but also ChemGenome
and the in silico predictions added some novel sProtein
identifications (e.g., CR2, see below), re-confirming the
value of our integrative approach. A less stringent filter-
ing could in principle also be used, as long as a down-
stream validation of all peptides implying a novel
sProtein is carried out, which also becomes a cost issue.
B. thetaiotaomicron, one member of our SIHUMIx

community, was investigated by Sberro and colleagues
using single culture proteomics. Out of 35 sProteins <
50 aa predicted with high confidence, they were able to
identify 4 using proteomics. Our SIHUMIx metaproteo-
mics data confirmed 2 of those, while one additional

Fig. 7 Role of enzymes in the close genomic vicinity of BP5 in the interaction of B. producta with SIHUMIx. Changes in the predicted metabolite
exchange by B. producta with other member species of the community following knockout of rxn15467. Negative values indicate uptake of a
compound by B. producta and positive values a production
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novel sProtein was only identified with 1 PSM in our
study and was thus filtered out. We identified an add-
itional eight novel sProteins in B. thetaiotaomicron,
which was likely due to our enrichment for sProteins,
being able to search against a comprehensive iPtgxDB
(based on complete genomes) and using a different size
threshold for sProteins [18]. The fact that several of
these missed sProteins were > 50 aa supports the selec-
tion of a threshold of 100 aa for a comprehensive discov-
ery of novel sProteins.
Our 25 validated novel sProteins showed a wide range

of physicochemical properties (Supplement Table 6)
which suggests a great diversity of potential functions.
Eighteen of those novel sProteins are predicted to be
non-cytoplasmatic or transmembrane. Since cell-cell and
cell-host communication is often mediated by small dif-
fusible molecules secreted by cells or by direct cell-cell
contact, these proteins may be involved in cell-cell com-
munication [77, 78]. A functional protein domain pre-
diction (Prosite) indicated that the 3 novel sProteins
AC2, BT5, and BT8 contain a potential Big-1 domain
(bacterial Ig-like domain 1) (Supplement Table 6). Big-1
proteins are surface-expressed proteins that mediate
mammalian host cell invasion or attachment in entero-
pathogenic bacteria [79–81]. This domain is part of ad-
hesion molecules of the intimin/invasin family.
Furthermore, it has been shown that Big-domain-
containing protein InvD from Yersinia pseudotuberculo-
sis acts by binding the Fab region of IgG or IgA and
might therefore avoid the clearance from the intestine
by secretory IgA, making these proteins interesting tar-
gets to study bacteria-host interactions [82]. Although
the SIHUMIx species are not enteropathogenic, these
three novel sProteins are interesting candidates for the
study of host microbiome interactions. Additionally, we
found domains involved in carbohydrate metabolism as
for example the mannose 6-phosphate receptor hom-
ology (MRH) domain in BP11 [83], or the FtsK domain
involved in cell division in AC1 and CR4 [84]. Another
interesting novel sProtein is BP10 containing a potential
MarR-type HTH domain, which is involved in the devel-
opment of antibiotic resistance [85, 86].
Recent studies indicate that sProteins play an import-

ant role in multi-species communities [18, 87]. In the
context of this work, we have identified 18 novel sPro-
teins in the SIHUMIx community and single cultures,
which can be interpreted as further layer of validation.
Nevertheless, six novel sProteins could only be identified
in the community, which potentially suggests a possible
community-associated function. However, it should be
noted that growth and cultivation conditions differ be-
tween individual cultures and communities and are diffi-
cult to control. The novel proteins can therefore also be
attributed to these varying conditions. Most of these

sProteins are predicted to be non-cytoplasmatic, indicat-
ing a role outside of the cell or membrane association.
This further promotes the chances of being directly in-
volved in cell-cell communication. Interestingly, an anti-
microbial function was predicted for two (CR2 and
BP12) of the six novel sProteins. AMPs are small, have
cationic, amphiphilic, or hydrophobic properties, which
make them interact with the negatively charged bacterial
membrane on which they form pores that cause cell
death. In bacteria, the production of AMPs represents a
competitive advantage thus ensuring their survival in the
community in ecological niches [88]. We tested the two
AMP-predicted sProteins, CR2 and BP12 (ranked among
novel sProteins with the 3rd and 5th highest AMP pre-
diction score; data not shown), on the growth of SIHU-
MIx species (Supplement Figure 6). Interestingly, only
for C. butyricum we observed a significant extension of
the lag time while grown on 1 μM synthetic CR2 sPro-
tein. This result may imply a specific interspecies inter-
action between the two Clostridium strains. It has been
previously reported that Clostridia interact with each
other [89] and also on the basis of AMPs [90].
These AMPs can further alter the normal bacterial

flora of the gastrointestinal tract to allow colonization
and proliferation of Clostridia [91]. It further supports
that most bacterial AMPs have a very narrow target
spectrum, i.e., they are only active against a few species
closely related to the producer [92, 93]. These finding
may explain the relatively low abundance of C. butyri-
cum in the SIHUMIx community during our in vitro
bioreactor cultivations (Fig. 4). Notably, we observed a
significant reduction in cell size after treatment of C.
butyricum with CR2 (Supplement Figure 7). Such a
property has already been described for other AMPs and
thus supports the prediction of an antimicrobial effect of
CR2 [94, 95]. However, more experiments are needed to
verify and further analyze this function. Also, other
novel sProteins, which had an even higher predicted
AMP prediction score, are interesting candidates for
investigation.
Using metabolic modelling, we also investigated the

importance of enzymes found in the genomic environ-
ment of our novel sProteins. In particular, we analyzed
those enzymes that play a role in metabolic interaction
within the SIHUMIx community. We observed that BP5,
a 48-aa-long novel sProtein only identified in commu-
nity cultivation, is located in a genomic region that con-
tains several enzymes whose activity is relevant for
community metabolism (Supplement Table 8). Those
enzymes were part of the isoleucine biosynthesis from
threonine and the TCA cycle. An in silico knockout of
(R)-2,3-dihydroxy-3-methylbutanoate hydrolyase which
is in close genomic neighborhood to BP5 and catalyzes
the second-to-last step in valine biosynthesis, led to a
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reduced metabolite production and concurrently in-
creased metabolite consumption by B. producta for the
SIHUMIx community members. This indicates an im-
portant function for community metabolism and leads
to the hypothesis that BP5 may serve as potential medi-
ator or modulator of community interactions in SIHU-
MIx. Future experiments, e.g., knock-out studies of BP5,
are needed to verify this feature.
In summary, this study shows that proteogenomics

can be used with metaproteomics to improve genome
annotation and to provide a better interpretation of
microbiome data. As these sProteins play a potentially
important role in prokaryotic microbial communities,
we recommend that future bacteria and microbiome
studies systematically analyze sProteins (including po-
tential novel sProteins) which is facilitated by the public
available iPtgxDB web server.

Conclusions
Our study shows that an integrated proteogenomic ap-
proach for the discovery of novel sProteins is applicable
to microbial communities. In total, we identified 31
novel sProteins, of which we were able to validate 25.
The comparison to protein expression in single strains
showed that 6 novel sProteins could only be identified in
the bacterial community, indicating a potentially import-
ant community-related function of these sProteins. Fur-
ther in silico studies and experiments showed that one
of these novel sProteins had a potential antimicrobial
function and one sProtein likely being involved in
community-related metabolism making these candidates
particularly interesting for further studies on intestinal
community shaping.
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