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Abstract

Studies of animal behavior are crucial to understanding animal-ecosystem
interactions, but require substantial efforts in visual observation or sensor
measurement. We investigated how classifying behavioral states of grazing
livestock using global positioning data alone depends on the classification
approach, the preselection of training data, and the number and type of movement
metrics. Positions of grazing cows were collected at intervals of 20 seconds in six
upland areas in Switzerland along with visual observations of animal behavior for
comparison. A total of 87 linear and cumulative distance metrics and 15 turning
angle metrics across multiple time steps were used to classify position data into the
behavioral states of walking, grazing, and resting. Five random forest classification
models, a linear discriminant analysis, a support vector machine, and a state-space
model were evaluated. The most accurate classification of the observed behavioral
states in an independent validation dataset was 83%, obtained using random forest
with all available movement metrics. However, the state-specific accuracy was
highly unequal (walking: 36%, grazing: 95%, resting: 58%). Random
undersampling led to a prediction accuracy of 77%, with more balanced state-
specific accuracies (walking: 68%, grazing: 82%, resting: 68%). The other
evaluated machine-learning approaches had lower classification accuracies. The
state-space model, based on distance to the preceding position and turning angle,
produced a relatively low accuracy of 64%, slightly lower than a random forest
model with the same predictor variables. Given the successful classification of
behavioral states, our study promotes the more frequent use of global positioning
data alone for animal behavior studies under the condition that data is collected at
high frequency and complemented by context-specific behavioral observations.
Machine-learning algorithms, notably random forest, were found very useful for
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classification and easy to implement. Moreover, the use of measures across
multiple time steps is clearly necessary for a satisfactory classification.

Introduction

In animal ecology, researchers aim at understanding how individuals or groups
interact with their environment. They are faced with the challenge of observing
tracks and behavior of the studied animals more or less continuously over
extended time periods. Important questions are habitat preferences and resource
utilization [1], travel routes and behavior in migratory species [2], and social and
predatory interactions within or between species [3]. In pasture ecology, grazing
behavior and resting time of domestic grazers are of major interest when studying
efficient resource use, productivity, and impacts on ecosystem functioning [4].
Walking, grazing, and resting are the primary activities of grazing livestock and
have a large impact on pasture ecosystems [5]. Selective grazing is considered to
be the most important impact on pasture vegetation [6]. Grazing can increase or
decrease heterogeneity of vegetation, depending on preexisting vegetation patterns
and on the strength of plant-soil interactions [7]. Walking and thus trampling of
animals leads to soil compaction and is a potential source of soil erosion. Resting
is often associated with deposition of excreta which can, together with herbage
removal by grazing, lead to a large-scale redistribution of nutrients over the
pasture area [8]. By reason of their importance for pasture ecosystems, we are
focusing on the mentioned three activities within the current study.

Gathering data about animal behavior holds essential difficulties. Direct
observation by humans can be hindered or impossible, e.g. in adverse weather
conditions or at night, or if the observations must be carried out continuously
over space and time. Furthermore, human presence might alter the behavior of
the observed animals. These limitations are more and more overcome nowadays
by the use of remote-observation techniques, so-called bio-logging, which have
been increasingly explored in the last decade in studying animal movement and
behavior [9]. Telemetry, such as the Argos system, has been designed to deliver
positions over long time periods, but with limited positional accuracy. It is
frequently used with marine animals [10, 11], migratory birds [12] or migrating
terrestrial mammals [13]. On the other side of the spectrum are the Global
Navigation Satellite Systems such as the Global Positioning System (GPS). Their
receivers have a high energy demand and limited battery life but they can deliver
positional data with high accuracy and at short time intervals. Bio-logging
techniques thus offer great advantages compared to human field observations. But
at the same time they require the assignment of obtained positions to different
behavioral states of the animals under study. The determination of behavior can
be supported by the use of additional sensors, such as accelerometers to measure
quick and local movements of the legs, heads or entire bodies of animals [14-16],
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heart rate monitors to measure energy costs of activity [17] or noseband pressure
sensors to determine bite rate and rumination behavior [18]. Using GPS receivers
alone avoids energy demand and costs of additional sensors and reduces
manipulations to the animals’ bodies. Therefore, the question arises how to gain
behavioral information from position data alone and to which extent this is
possible.

The differentiation of behavioral states is especially challenging if movement
patterns are predominantly slow and complex. The behavioral activities of
pasturing cows, sheep or goats, for example, change frequently within a relatively
small space, making their distinction difficult [16]. Several studies have presented
approaches to behavioral classification of grazing livestock from position data
alone. Schlecht et al. [19] measured positions of Zebus at 10 s resolution and
classified positions using four movement metrics within a three minute time
interval as predictor variables in a linear discriminant analysis. Anderson et al.
[20] tracked beef cows at time intervals of 1 s and used threshold values of mean
movement rate calculated for one minute periods to discern between walking,
grazing, and resting.

The accuracy of behavioral classification depends on several factors. First,
measuring accuracy of the remote tracking device matters [21,22]. Second,
behavioral variation between individuals or breeds of the same species, as well as
different animal species, can play a role in the determination of distinct behavioral
states [23]. Third, the time interval between GPS measurements in the field can
influence classification accuracy [24]. And fourth, the result may depend on the
statistical approach used for classification. Quantitative studies dealing with
behavioral classification of bio-logging data often apply process modelling using
state-space models [25] or machine learning such as classification trees [15] and
linear discriminant analysis [19]. Machine learning methods group data points
based on some measure of similarity. They are easy to implement and flexible but
ignore the temporal and spatial process which underlies the data. State-space
models retrace the underlying process by explicitly modelling data in the temporal
and spatial order in which they have been recorded. They are also able to integrate
additional sources of errors (e.g. device accuracy) [25] but they require more
efforts for implementation and higher computational power.

Our aim was to compare several machine learning algorithms and state-space
modelling regarding behavioral classification. Temporal dependence was mod-
elled explicitly with the state-space model, and implicitly within the machine
learning models by using a range of predictor variables computed over multiple
consecutive positions. Specifically, we addressed the following questions:

1. Is it possible to differentiate between the behavioral states of walking, grazing,
and resting of cows grazing upland pastures based on GPS positions alone?
Quantifying livestock behavior (e.g. walking, grazing, and resting) at low costs and
limited manipulations on the animals’ bodies greatly facilitates investigating
relationships between livestock and the ecosystem at a local scale.
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2. What is the effect of model parameterization, temporal resolution of the
data, and classification technique on classification accuracy in total and for the
individual behavioral states?

3. How is the abundance of the behavioral states influenced by the
classification? Such activity budgets are of great interest in the assessment of
management impact on grazing livestock in the long term.

Materials and Methods
Study sites

The study was conducted on six grazed upland areas, so-called alpine farms, at
elevations between 1,400 and 2,400 m asl. The farms are only temporally grazed
and inhabited during summer. They were situated in two Swiss mountain regions,
the canton of Obwalden in the Northern foothills of the Alps and the Lower
Engadine (canton of Grisons) in the Eastern Central Alps. All farms were grazed
by dairy cows, two of them additionally had suckler cows. The size of single
paddocks varied between 0.17 ha and 87 ha, and herd size varied between 15 and
120 cows. The vegetation was mainly composed of montane and subalpine
grassland types, dwarf shrub associations, and some forested pasture areas.
Animals under study were in private ownership and handled by the owners. No
further permits were required for the described measurements, which complied
with all relevant regulations.

GPS tracking

On each of the alpine farms, three to four cows were equipped with GPS collars.
The aim was to register a range of individual behaviors that represented the
majority of the cows on a farm. Therefore, cows were selected that showed
ordinary behavior and were well integrated into the herd. A leather saddle
carrying the logger box was mounted directly on the bell collar of each cow
selected for study. The differential GPS loggers were low-cost models (Qstarz BT-
Q1000XT, Qstarz Ltd., Taipei, Taiwan) with EGNOS correction [21], a recording
capacity of 400,000 waypoints and a maximum logging frequency of 1 Hz. In
order to extend the measuring period, the device was modified with two 3.6 V
lithium batteries, lasting up to six weeks. Considering that we attempted to collect
measurements for the duration of the battery life, we determined that a recording
interval of 20 seconds was a reasonable trade-off between data storage capacity
and information content. Our decision was reinforced by a preliminary study
indicating similar visual interpretability of tracks recorded at 10 s and 20 s time
intervals. Measurements were done throughout the entire summer, 2011. After
three to six weeks, the stored positions were transferred to a computer and
projected from WGS84 (EPSG: 4326) to the Swiss national grid CH1903 LV95
(EPSG: 21781).
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With three of the loggers we evaluated the measurement accuracy of the
devices. Each was placed on fixed points with known coordinates for up to twenty
minutes. The fixed points were located in hilly terrain at locations with both full
and limited satellite visibility. We calculated the deviation of the logged positions
from the fixed point position (absolute error), as well as the deviation of the
logged positions from their centroid (relative error). The 0.5 percentile of the
absolute error was at 3.1 m, the 0.95 percentile was at 4.39 m. For the relative
error, the 0.5 percentile was at 1.49 m, and the 0.95 percentile was at 2.44 m.

Visual observation of behavior

In order to obtain training and validation data for the classification, the behavior
of fifteen cows, each equipped with a GPS logger, was observed on the pasture for
up to six hours each. Single observation sequences of one to three hours were
dispersed over the entire period of measurement and the six study areas. Some
cows were observed twice, resulting in nineteen track sequences containing visual
observations of behavior and predictor variables. The observer followed the herd
at a distance ensuring that the cows behaved undisturbed. Animal behavior was
observed continuously, i.e. every behavioral change of the cow was recorded
together with precise GPS time, based on which behavior was assigned to the GPS
positions at discrete time intervals. Observed behaviors were grazing, walking,
running, resting, standing, interacting with other animals of the herd, defecating,
and drinking. Interacting, defecating, and drinking were too rare for classification,
and as we were interested in those behaviors exercising the greatest influences on
the ecosystem we only considered the three behavioral states walking, grazing, and
resting for further evaluations. Walking was observed when the cow moved more
than five steps with the head up, and comprised also running. Resting comprised
standing and lying. Grazing was recorded when the cow was ripping the grass off
and also when it made a few steps forward with the head down, in search of food.
In so doing we defined the behavioral states broadly to reduce very quick changes
of observed behavior in our data. The original data set is provided as Dataset S1
under the PLOS ONE data policy.

Movement metrics

From position data alone, different movement metrics can be derived and used
for the identification of behavioral states. The two basic metrics are the distance
between subsequent positions and the turning angle at each position (Figure 1).
They are often used in state-space models to discern between behavioral states. In
a first step, we compared the density distributions of the two basic metrics
between the states walking, grazing, and resting. Since larger tracking time
intervals can hinder the differentiation of behavior based on the two described
basic movement metrics, we subsampled the original data set at 60 s time intervals
and recalculated the metrics.
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Figure 1. Schematic representation of movement metrics used as predictor variables in the
classifications. Movement metrics include backward cumulative distance (a1), forward cumulative distance
(a2), backward linear distance (b1), forward linear distance (b2), and turning angle between GPS positions (c).

doi:10.1371/journal.pone.0114522.9001

In a second step, we extended the two movement metrics distance and turning
angle over multiple positions. Our motivation was the fact that each of the cows’
activities often lasts for several minutes, and so, movement integrated over a
longer time period may be meaningful in describing cow activities from position
data alone. Regarding distance, we computed two types of metrics, cumulative
distances along positions and linear distances between positions (Figure 1), both
of which were computed at each 20 s interval, up to five minutes before and after
each position. In the following text, distances that lie temporally before a
considered position are called backward distances, and those after a focal position
are called forward distances. In addition, we computed the average of backward
and forward distances for each time interval (20 s, 40 s, 60 s, etc., up to five
minutes) and each distance type (cumulative, linear). Regarding turning angle, we
generated average turning angles over three, five, seven, etc... positions up to five
minutes around each position. The resulting 87 distance metrics and 15 turning
angle metrics were added to each position as predictor variables.

Evaluated models

Eight models were evaluated, which differed in a) the classification approach, b)
the preselection of training data, and c¢) the number and type of predictor
variables (Table 1).

The evaluated classification approaches were a random forest algorithm
(models A — E), a linear discriminant analysis (model F), a kernel support vector
machine (model G), and a state-space model (model H). The random forest
algorithm is a machine learning algorithm especially suited for data sets with
many, and possibly highly collinear, predictor variables [26,27]. We used package
randomForest 4.6-7 in R 3.0.2 [28]. Linear discriminant analysis (function lda in
R package MASS 7.3-29 [29]) seeks linear combinations of predictor variables to
describe the levels of a categorical variable [29, 30]. Kernel-based machine learning
methods extract structure from the data by an “implicit mapping of the input
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Table 1. Characterization of the eight classification models.

m Classification approach Preselection of training data Predictor variables

RF
RF
RF
RF
LDA
SVM
SSM

I @ Mmoo w >

1 distance + turning angle
- 87 distances + 15 turning angles

RUS 87 distances + 15 turning angles
SMOTE 87 distances + 15 turning angles
60 s interval + RUS 27 distances + 5 turning angles

SMOTE 87 distances + 15 turning angles
SMOTE 87 distances + 15 turning angles

- 1 distance + turning angle

Shown are the classification approach (RF = random forest, LDA = linear discriminant analysis, SVM = support vector machine, SSM = state-space
model), the method of preselection (RUS = random undersampling, SMOTE = synthetic minority oversampling technique) and the number and type of

predictor variables.

doi:10.1371/journal.pone.0114522.t001

data into a high dimensional feature space defined by a kernel function” [31]. We
built a support vector machine with Gaussian Radial Basis kernel using R package
kernlab 0.9-19 [31]. Model H was a state-space model, in which the sequence of
observed behavioral states was modeled as a mixture of three random walks with
fixed switching probabilities between them [32]. Each random walk was
characterized by a distinct combination of turning angle and distance to the
preceding position, which followed a wrapped Cauchy and a Weibull distribution.
Model parameters were estimated by Markov Chain Monte Carlo using JAGS
3.4.0 [33]. Wide Gamma distributions were used as vague priors for the Weibull
parameters and uniform distributions for the wrapped Cauchy as well as for
switching probabilities, respectively. Convergence was rapid and assessed with
Gelman-Rubin statistics [34]. In order to limit computing time, posterior samples
were drawn from 500 iterations of three chains each, after discarding 200
iterations for burn-in.

In order to avoid classification bias due to uneven class sizes, training data was
preselected using two different techniques: random undersampling (models C and
E) and synthetic minority oversampling (models D, F and G). No preselection was
carried out prior to models A and B, and neither to model H, as in state-space
models the whole course of a track is needed for modelling. Random
undersampling (RUS) was achieved by drawing a random sample of positions
from each of the three behavioral states the size of the smallest class (walking) for
each tree of a random forest. RUS is implemented in the R random forest
function, specified with “sampsize” and “strata”. In contrast, using the synthetic
minority oversampling technique (SMOTE), new artificial data for the least
frequent state were added by extrapolating from the original data [35]. It is
implemented in the package DMwR [36]. In addition, only positions every 60 s
were used for model E, in order to investigate how a lower temporal resolution
changed the classification accuracy. For the subsampled data set, movement
metrics for up to five minutes before and after each position were recalculated.
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Regarding the predictor variables, models A and H were built with only the
distance to the preceding position and the turning angle at a position, which is a
frequent constellation in random walk models [37]. All 87 distances and 15
turning angles were used in models B, C, D, F, and G. Only 27 distance variables
and 5 turning angles were used in model E because of the larger time interval after
data thinning. In addition, a null model was built, where behavioral states were
randomly assigned to positions in the abundance in which they occurred in the
dataset.

Model testing and evaluation

Similar to real-life situations, where GPS tracks are classified based on relatively
short sequences with behavioral observations, classification accuracy was
quantified based on the prediction of independent track sequences. In turn, each
observed sequence of behavioral states was predicted from models fitted to the
remaining 18 sequences. In the state-space approach, the most frequent state in
the posterior sample of each position was taken as the predicted state. The
percentage of correctly classified positions was calculated for each sequence
individually and jointly for all available observations. Differences of classification
accuracy between the models were tested for statistical significance with a t-test.

Besides classification accuracy, we were also interested in how well spatial and
temporal patterns of animal behavior can be modeled, i.e. which of the positions
are predicted correctly and which not. Hence, a short example track representing a
small subset of the data was selected. For the example track, predictions of one
realization of the eight models at each position were visualized and the confusion
matrices were calculated. In order to give an impression of how the model
influences the estimation of the animals’ behavioral budget, for each of the eight
models the relative abundance of behavioral states was determined within the
example track sequence as well as within the whole data set.

For better ecological interpretation of the multiple predictor variables we
determined their individual importance for the classification of each of the
behavioral states. The calculation of variable importance is implemented within
the R function randomForest [28]. As an illustrative example, variable importance
was evaluated based on model C.

Results
Characteristics of observation data set

The 19 individual track sequences containing visual observations of behavior
covered a total of 44 hours. The data set was unbalanced for the three behavioral
states: 478 positions were observed as walking, 6674 positions observed as grazing,
and 2296 positions observed as resting. Observed walking, grazing, and resting
differed with respect to the movement speed of the cows (Figure 2). The
distributions of speed values for the three observed behavioral states showed
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Figure 2. Distributions of movement speed and turning angle at 20 s and 60 s time intervals. Density distributions within the observed behavioral
states walking (gold), grazing (blue), and resting (red), and in the data set of the test of GPS device accuracy (gray). Continuous lines represent the original
data with 20 s intervals, dotted lines represent the data subsampled to 60 s intervals.

doi:10.1371/journal.pone.0114522.9002

separate peaks, but there was a considerably large overlapping area between
resting and grazing, and a smaller one between grazing and walking. Several
positions, where resting was observed, had rather high speed values. The
stationary measurements from the test of device accuracy demonstrated a
narrower distribution. Speed values between positions observed as grazing formed
two distinct peaks. Density distributions of speed values calculated after
subsampling the original data to 60 s intervals showed larger overlapping areas,
i.e. more similar values between behavioral states than those at 20 s intervals.
Remarkably, the distributions for walking and resting in the 60 s dataset were
flatter than in the original 20 s data, but the distribution for grazing was steeper
and narrower (Figure 2). Mean movement speeds of the cows were (with 0.05 and
0.95 quantiles in brackets) at walking 0.41 m/s (0.005 m/s, 1.08 m/s), at grazing
0.06 m/s (0.003 m/s, 0.25 m/s), and at resting 0.04 m/s (0.0007 m/s, 0.2 m/s).
The distributions of turning angle values for walking, grazing, and resting were
less separated in the original 20 s data than those of movement speed (Figure 2).
In the 60 s data, the turning angle distributions for walking and grazing were
almost completely overlapping, whereas the distribution for resting only changed
marginally. Interestingly, the distribution of turning angle within the stationary
measurements corresponded largely to the one within grazing. Mean turning
angles of the cows were (with 0.05 and 0.95 quantiles in brackets) at walking 0.63
rad (0.03 rad, 2.21 rad), at grazing 0.92 rad (0.05 rad, 2.66 rad), and at resting 1.21
rad (0.07 rad, 2.88 rad).

Classification accuracy of the models

Model A, based on the unbalanced data set and one distance plus one turning
angle as predictor variables, yielded an overall classification accuracy of 72% with
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Figure 3. Classification accuracies of the models A — H and the null model. Percentage of correctly
classified states in joint sequences together with 50% and 95% quantile intervals for individual sequences,
overall (black) and for the three behavioral states walking (gold), grazing (blue) and resting (red). For
specifications of models see Table 1.

doi:10.1371/journal.pone.0114522.g003

a highly unbalanced state-specific accuracy (Figure 3). Adding distance measures
and turning angles over multiple time steps improved the classification accuracy
significantly (P<<0.001), reaching 83% in model B. Using this model, grazing

behavior was classified with an accuracy of 95%. However, resting (58%) and

walking (36%) were classified less accurately. Balancing the data with RUS (C) led
to a non-significant drop of classification accuracy (77%) compared to model B.
However, with balanced data, the specific accuracies for the three behaviors were
more similar (walking: 68%, grazing: 82%, resting: 68%). Balancing with SMOTE
(D) also led to an equalization of the state-specific classification accuracies, but to
a smaller extent than RUS, and the overall classification accuracy was somewhat
lower (72%) than that of model C and significantly (P<<0.01) lower than that of
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model B. Classification accuracy of model E, based on data thinned to 60 s
intervals, was 74%, which is close to the average of all evaluated models. The same
overall accuracy was reached with the support vector machine (G), but with more
unbalanced state-specific accuracies despite data balancing with SMOTE. The
linear discriminant analysis (F) and the state-space model (H) produced the
lowest classification accuracies compared to all other models with 67% and 64%,
respectively. The overall accuracy of model H was lower than for model A with the
same predictor variables. However, state-specific accuracies were more similar in
model H than in model A. The null model had an overall classification accuracy of
46% with the expected uneven state-specific accuracies of 5% for walking, 70% for
grazing, and 25% for resting.

There was also a remarkably large variability in the classification accuracy for
the two states of walking and resting (Figure 3). Most of this variability resulted
from the fact that these two states were very rare in some sequences and hence the
misclassification of a few positions resulted in a low classification accuracy.

Classification of individual observations in an example track

Using the unbalanced models A and B, 76% and 81% of the positions observed as
walking were classified as grazing, respectively (Figure 4). Using model C,
balanced using RUS, the number of falsely classified positions was altogether
balanced and was between 2% and 14%. This numbers were slightly higher and
less equal in model D, balanced using SMOTE. In model E, despite data balancing
with RUS, a rather high number of observed walking positions (56%) were
classified as grazing. Model F produced relatively high percentages of falsely
classified positions, especially observed walking and resting positions classified as
grazing, and observed grazing positions classified as resting. In model G, the
distribution of misclassified positions was similar to model D. In model H, 43% of
observed walking was classified as grazing and 20% of grazing was classified as
resting.

The differences between the classifications of the eight models and the visual
observation were also reflected in the predicted relative abundances of the
behavioral states calculated for the example track (Figure 5). Specifically, when
compared to the observed reality, models A and B predicted more grazing
positions. Models C to G predicted a little more walking and resting positions at
the cost of grazing positions. High portions of resting positions were predicted by
models F and H.

These tendencies were also present in the abundances calculated for the whole
data set (Figure 5). However, most models classified fewer positions as resting and
more positions as walking in the whole dataset than in the example track.
Regarding the resting positions, this difference was especially large in model F.
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Observation

Figure 4. Comparison of observed and predicted behavioral states along an exemplary cow track. Colors indicate the three behavioral states of
walking (gold), grazing (blue), and resting (red) as observed in the field (Observation) and as predicted by eight classification models (A - H). Gray symbols
are observed additional states, which were too rare for classification. Slight jitter was added to the positions to minimize symbol overlap. The time interval
between positions is 20 s, except for model E, subsampled to 60 s. Gray lines are isolines at 2 m distance (swissALTI3D, Swiss Federal Office of
Topography, Wabern). The inlay shows the confusion matrix with gray-shading according to the percentage of positions in each row classified into the three
behavioral states, i.e. the first row shows the percentage of positions observed as grazing and classified as walking (w), grazing (g), and resting (r).

doi:10.1371/journal.pone.0114522.9004

Importance of predictor variables for classification

For the classification of walking, backward cumulative distances over short time
intervals were most important (Figure 6a). Linear distances were less important
for the state of walking than cumulative distances. Regarding the turning angles,
their importance was altogether low, but the angle at a considered position, the
average over three positions and the average over a large number of positions were
comparably more important for the classification of walking. In contrast to
walking, grazing was characterized by a large range of distance metrics and average
turning angles, which is apparent from the more equal distribution of importance
across time intervals (Figure 6b). This finding agrees with our field observations of
the cows. What was visually observed as grazing covered quite a large range of
movement speeds, i.e. almost stationary feeding when the fodder quality was good
and cows were familiar with the terrain, but also dynamic grazing in order to
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Figure 5. Relative abundance of the three behavioral states. Accumulated relative abundance of the
states walking (gold), grazing (blue), and resting (red), as it was observed (Ob) and as it was predicted by the
eight classification models (A - H) in the example track (striped columns) and in the whole data set (filled
columns).

doi:10.1371/journal.pone.0114522.9005

detect the rare patches of high quality forage in the case of low food supply. The
third behavior, resting, was observed in the field as a behavior of rather long
duration. Similar to grazing, a high number of distance metrics was needed for
correct classification, but especially mean linear distances calculated over large
time intervals (Figure 6¢). For the classification of resting turning angles averaged
over large time intervals were more important than those averaged over small time

intervals.
A B C
14 s -
(O] =
3] =
& 1,
£ 0.1 - .
s H.ilve
g :.v:‘é;;vv‘¥x‘$“ . x
© 001g = Vvg2ePsd i ] .‘
r— = ...'Il.l * ‘ x “
8 3 Ai““‘xx'!x" ST 1 1A 'i}l"x‘tvo~'
< 0.001 1 .p -
A||||||||||||||| I O O R N TT T T T T T T T T 77T
60 180 300 60 180 300 60 180 300

Time interval [s]

Figure 6. Variable importance of movement metrics in model C. Mean variable importance of movement metrics for the behavioral states walking (A),
grazing (B), and resting (C) as calculated from 50 random forest realizations of model C. Colors and symbols indicate the different movement metrics
cumulative distance (orange), linear distance (violet), forward distance (upward triangle), backward distance (downward triangle), mean distance (point),
turning angle and mean turning angles over multiple positions (green square).

doi:10.1371/journal.pone.0114522.9006
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Discussion

Our evaluation demonstrates that behavioral states in cows grazing heterogeneous
terrain can be reliably identified with high-frequency position data alone. Such
information is of great use in analyzing spatial or temporal activity patterns of
grazing animals and resulting consequences for the delivery and management of
ecosystem services. However, the classification of high-resolution data poses a
number of challenges, which are discussed below.

Random forest is well adapted to behavioral classification

Animal tracking data are temporally interdependent. Temporal dependence is
explicitly accounted for by state-space models, which include a state-transition
equation, meaning that states are modelled depending on the previous state in
time [25]. In contrast, machine learning models do not consider the temporal
order of the classified positions. To account for temporal dependence we used not
only movement information from one recorded position to the next but across
multiple positions. Hence, the models implicitly account for persistence in the
behavior of the studied animal. The importance of many predictor variables for
the classification of positions confirms that the use of a large range of movement
metrics is justified: each behavioral state was characterized by another set of
metrics.

Multiple variables calculated from the same data are often highly correlated.
This multicollinearity of the predictor variables must be considered when
choosing a machine learning method. Classical techniques based on eigenvectors,
such as discriminant analysis, can produce inaccurate predictions if performed
with collinear variables because the eigenmatrix cannot be sufficiently reduced
[26, 38]. Under these circumstances, tree-based machine learning techniques such
as random forest often perform better than eigenvector-based approaches [26].
Because random forest aggregates multiple random decision trees, collinear
variables have less impact on results than in eigenvector-based methods. In our
data set, a linear discriminant analysis conducted with the identical full variable
set resulted in an overall classification accuracy which was ten percent units lower
than the random forest classification.

Random forest also allows for the reduction of predictors, thereby reducing
multicollinearity of predictor variables. Variables are retained based on their
importance, which is calculated during the buildup of the random forest [39, 40].
Random forest models with a significantly reduced variable set yielded nearly the
same accuracy as conducted with the total variable set, which confirms collinearity
and an excess of predictor variables (Figure S1). However, because there was no
difference in the classification result, these issues were not of concern.

A random forest model and a state-space model both including the predictor
variables distance to the preceding position and turning angle did not differ
significantly in classification accuracy. Adding movement metrics over multiple
time steps led to a significant improvement of the random forest classification
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result, but to a substantial decline of accuracy in the state-space model (Figure
52). This indicates that, regarding the number of predictor variables and the
ability to select the most important for classification, the random forest approach
is more flexible than the state-space approach.

Unbalanced data impairs classification accuracy of rare states

When assessing animal behavior we often deal with unbalanced data, as behavioral
states are not equally frequent. While random forest classification with the
unbalanced data set produced the highest overall classification accuracy of all
models, only the common state of grazing was well classified, and the less frequent
states of walking and resting had low classification accuracies. Such a classification
with unbalanced data could be an adequate solution if only the most frequent
state is of interest. However, one should note that even the null model produced a
classification accuracy of 70% for grazing.

In order to avoid biased accuracies for infrequent behavioral states, our
evaluations suggest conducting a balancing procedure even if the overall accuracy
is higher with unbalanced than with balanced data. This is especially important if
the more infrequent states are of special interest or if the frequency of states is not
known a priori. Balancing can be done by stratified behavior observation in the
field, by drawing balanced subsamples of data (e.g. by RUS), or by augmenting the
less frequent states during the statistical analysis (e.g. by SMOTE). In contrast to
other classification techniques, the random forest algorithm provides a convenient
possibility for RUS, in which a random balanced subset is chosen for growing each
individual tree of an entire forest [41]. Van Hulse et al. [42] assessed the utility of
different balancing techniques in the context of different classification methods
and found RUS performing well with random forest. Indeed, the same model
trained with data balanced with SMOTE produced a lower overall classification
accuracy and stronger differences between state-specific accuracies. In the case of
state-space modelling there is no way to preselect data points prior to
classification, because the original temporal order of positions is needed for
modelling. Nevertheless, the state-specific accuracies of a state-space model were
more balanced than those produced by a random forest model with the same
predictor variables and without data balancing prior to modelling.

Data balancing also had an effect on the quantification of behavioral budgets of
the tracked animals: Classification of the unbalanced data set resulted in an
overestimation of the relative abundance of the most frequent state. Predicted
abundances of behavioral states are also influenced by redistributions of positions
between the behavioral states, which are specific for each model. A model trained
with data balanced by SMOTE, for example, classified an especially high number
of positions as walking, i.e. the rarest state. The linear discriminant analysis,
however, resulted in a surplus of positions classified as resting. Predictions based
on an accurate model will always have a higher probability of matching the real
behavioral pattern of an animal than those based on a less accurate model.
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Importance of turning angle and terrain slope for behavioral
classification

In contrast to our expectations, classification accuracy was not reduced by
omitting turning angles from the models (Figure S3). This is surprising given the
fact that turning angle is frequently a major component of state-space models of
animal movement [37, 43]. Apparently, the ability of turning angle to discriminate
between different behavioral states depends on the behavioral pattern of the
species studied and the technical setup. In contrast to our study, possums [24], elk
[32], and grey seals [44] tagged at intervals between 5 minutes and two days
showed two behavioral states with quite different movement characteristics, a
stationary behavior and a directed long-distance travelling behavior. The
distributions of turning angle characterizing the two behavioral states were
sufficiently separated, and therefore, turning angle improved classification
accuracy [43]. The behavior of pasturing cows rather corresponds to a stationary,
also called ‘slow-area-restricted” [24], behavior and comprises several behavioral
states with similar movement characteristics changing rapidly in time and space
compared to the characteristics of stationary and travelling behavior. In our data,
especially the distributions of turning angle within the behavioral states grazing
and resting were weakly separated. Another possible reason for this was revealed
by our test of device accuracy. Recorded positions are averages over multiple
readings calculated inside the GPS device and, hence, the absolute measurement
error exceeded the relative error between subsequent positions. Thus, the
measurement error during resting did not result in the expected scatter plot-like
recordings apparent with large turning angles.

Higher classification accuracy and a clearer separation between resting on the
one hand and walking and grazing on the other hand was expected by including
the environmental variable of terrain slope, as steep slopes inhibit resting, due to
physical difficulty. Behavior of ranging cows is influenced by pasture terrain [45],
but the inclusion of terrain slope did not help to better define their behavioral
states (Figure S4). The information of terrain slope is apparently contained within
the movement metrics already. Furthermore, terrain slope is a weak predictor,
because it excludes resting at steep slopes but it does not exclude walking and
grazing on flat pasture areas. It is weakened by the fact, that we built the state
resting by combining lying on the ground and standing, of which standing is more
likely on slopes than lying.

Accurate predictions require high temporal resolution

Using a time interval of 20 s, it was possible to visually interpret the behavioral
states of walking, grazing, and resting from the recorded cow tracks, which was
also found by Davis et al. [46]. Postlethwaite et al. [24] reported that extended
time intervals in movement models impede the identification of behavioral states.
They attributed this result mainly to the fact that, as sampling time interval
increased, turning angles became more uniformly distributed. We also observed
that the distributions of distance metrics became more uniform with increasing
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sampling time interval. If we subsampled our data set at intervals of 60 s
compared to 20 s, overall classification accuracy dropped by only three percent
units, but walking was especially misclassified, the state which is mainly defined by
large displacement at short time steps. We ensured that this effect was not due to
the reduced number of positions in the data set.

Multiple movement metrics characterize behavioral states of
grazing cows

Our investigation shows that the classification of behavioral states based solely on
movement characteristics between two subsequent positions is likely unsatisfac-
tory, confirming a number of earlier, less systematic studies. Anderson et al. [20],
for example, compared several distributions of mean distance between subsequent
positions at time intervals from 30 s to 180 s. They showed that averaging
distance over several time steps produces more distinct and narrower peaks in
stationary and slow movement behavior but a flattened peak in fast movement,
such as walking. This trade-off can be overcome by including more than one
movement metric in the classification. Schlecht et al. [19] used four distance
variables within a time interval of 3 min to classify behavioral states of grazers. In
our study, the behavioral states of grazing and resting showed similar distances
between subsequent positions. Hence, their distinction was particularly challen-
ging and relied on the use of multiple movement metrics. Ungar et al. [16]
pointed out that the state of walking but not resting and grazing could be
distinguished using distances between subsequent positions. However, as they
measured positions at 20 min and 5 min intervals, the effect of temporal
resolution might also partially explain this result. Variable importance, calculated
during random forest classification, clearly demonstrates the relevance of various
movement metrics for the classification of behavioral states. The fact that
classification based solely on measures between subsequent positions can be
distinctly different from one based on multiple intervals corroborates the need to
include persistence in movement models of grazing animals [37]. Two extended
state-space models including movement metrics over several time steps (Figure
52) did not yet provide improved overall classification results, but more balanced
state-specific accuracies.

Conclusions

GPS data alone can be exploited for many applications. With the easy accessibility
to and increased accuracy of portable, low-cost GPS receivers, inference of animal
behavior from position data alone has a large potential for use in applied
ecological studies. Pasture and livestock ecologists are now able to locate animal
activities precisely in space and time over extended study periods. This spatio-
temporal information improves the analysis and understanding of vegetation
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patterns and biogeochemical processes, and contributes to the development of
sustainable land use strategies.

In this study, we have advanced behavioral classification from GPS data alone
by evaluating a wide range of approaches involving movement metrics at multiple
time intervals. We found random forest classification models very helpful in an
applied context of behavior estimation, especially in their ability to handle many
collinear predictor variables and highly unbalanced class frequencies. Despite the
fact that there is no underlying process model, calculating variable importances
facilitates the interpretation of results. They showed that a high temporal
resolution in the collection of position data and the use of multiple distances at a
range of time steps were prerequisites for a satisfactory classification. This
supports further efforts in development of movement models that consider
persistence and memory in the behavior of grazing animals.

Our investigation also demonstrated that the fit of such complex classification
models would not have been possible without direct field observation.
Comparisons with other studies show that classification accuracy and the
importance of predictor variables is highly context-dependent. Hence, direct field
observations of animals in the environment under study are indispensable for
understanding their behavioral patterns and their expressions in different
environmental and social constellations.

Supporting Information

Figure S1. Comparison of random forest models with full and reduced set of
predictor variables. Full models (circles) were reduced (triangles) using package
varSelRF [39], which iteratively excludes predictor variables with low importance
until the classification accuracy drops. Shown is the percentage of correctly
classified states in joint sequences together with 50% and 95% quantile intervals
for individual sequences, overall (black) and for the three behavioral states
walking (gold), grazing (blue) and resting (red). For specifications of models see
Table 1.

doi:10.1371/journal.pone.0114522.s001 (EPS)

Figure S2. Extensions to the state-space model. Percentage of correctly classified
states in joint sequences together with 50% and 95% quantile intervals for
individual sequences, overall (black) and for the three behavioral states walking
(gold), grazing (blue) and resting (red). Model H was a state-space model in
which the likelihood of being in a state and the switching probability depended on
the position at time t-1 and the turning angle. Model H1 was similar to H, but the
likelihood of being in a state depended on 30 distance metrics (distances to
positions at other time intervals than t-1) and turning angle. Model H2 was a
state-space model in which also the switching probability depended on 30 distance
metrics and turning angle, i.e. P(s;) = > wyP(s;,s:—x), where s is the state, x is the
time step of the included movement nietrics and w are weights for each of the
time steps of the included movement metrics. Variable importances calculated

PLOS ONE | DOI:10.1371/journal.pone.0114522 December 4, 2014 18 /22


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0114522.s001

@'PLOS | ONE

Inferring Behavioral States from GPS Data Alone

from model C were used to identify the distance metrics to be included. The ten
distance metrics with the highest variable importance for each state were included
and their distributions modeled by independent Weibull distributions.
doi:10.1371/journal.pone.0114522.s002 (EPS)

Figure S3. Comparison of random forest models including and excluding
turning angle. Circles represent models with the respective distance and turning
angle metrics, triangles represent models with distance metrics only. Shown is the
percentage of correctly classified states in joint sequences together with 50% and
95% quantile intervals for individual sequences, overall (black) and for the three
behavioral states walking (gold), grazing (blue) and resting (red). For
specifications of models see Table 1.

doi:10.1371/journal.pone.0114522.s003 (EPS)

Figure S4. Random forest classification including terrain slope. Percentage of
correctly classified states in joint sequences together with 50% and 95% quantile
intervals for individual sequences, overall (black) and for the three behavioral
states walking (gold), grazing (blue) and resting (red). Model C was a random
forest model with all movement metrics. Model C1 was similar to Model C but
included terrain slope. Terrain slope at each GPS position was extracted from
altitudinal data with a resolution of 2 m (swissALTI3D, Swiss Federal Office of
Topography, Wabern). The absolute accuracy of all three dimensions in this data
was 0.5 m for data below 2000 m asl and 1-3 m for data above 2000 m asl.
doi:10.1371/journal.pone.0114522.s004 (EPS)

Dataset S1. Original GPS tracking data with observed cow behavior.
doi:10.1371/journal.pone.0114522.s005 (TXT)
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