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Summary

Currently different methods are used to select informative individuals for re-sequencing and
genotype imputation. In this study we compared the utility of the recently described
identification of key contributors (KCO) method with two commonly applied strategies,
namely the identification of pedigree-based marginal gene contributions (PED) and the
optimization of genetic relatedness (REL) and against animals selected at random (RAN).
Based upon a simulated population structure (5,100 individuals and 10,000 SNPs) we show
that, KCO provided the highest phasing (lowest switch error rates) and imputation accuracies
(0.5% and 91.5%), followed by PED (2.6% and 88.1%), RAN (1.6% and 87.5%) and REL
(5.4% and 87.0%) when including a maximum number of 100 individuals in the reference
population. Furthermore, it was demonstrated that with the selection of key contributors
especially the imputation accuracy (correlation between true and imputed genotype) of rare
variants (minor allelic frequency <0.1) can be significantly increased by more than 10%.
Therefore, we suggest to include the individual genetic contribution score in the decision
criteria when selecting individuals for re-sequencing and genotype imputation.
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Introduction

Presently, global efforts are focused on re-sequencing individuals within species and
breed groups to improve our knowledge on the genetic architecture of populations (Deatwyler
et al., 2014). A typical approach in such scenarios is to re-sequence informative individuals
within populations, and to impute genotypes at whole-genome sequence level of additional
animals genotyped with high density SNP panels (Frischknecht et al., 2014). The prevailing
methods for the selection of reference individuals for genotype imputation solely focus on the
identification of key ancestors through pedigree or genomic relationship information to
maximize genetic diversity. Typically such strategies do not involve genotype information of
the most influential and connected progeny, which may lead to a loss of phasing accuracy of
the reference population and has posed problems in genotype imputation (van Binsbergen et
al., 2014).

We have recently shown that informative individuals for re-sequencing and genotype
imputation can be selected based on the Eigenvalue Decomposition (EVD) of a genomic
relationship matrix (Neuditschko et al., 2017). EVD like Principal Component Analysis
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(PCA) is a multivariate technique that provides an optimal subspace to investigate population
structures by maximizing variation on the highest components. Based upon this mathematical
principle we identified so called key contributors that capture most of the variation in the
relevant genetic relationship structures. We have already demonstrated that the selection of
key contributors increases phasing accuracy of the reference population compared to methods
currently applied. Here, we further investigate the selection of key contributors on imputation
accuracy including different sample sizes and five minor allelic frequency (MAF) classes in
the analyses.

Material and methods

Simulated data

The simulated data consisted of a total of 5,100 individuals and 10,000 SNPs as
described by Usai et al. 2014 at http://qtl-mas-2012.kassiopeagroup.com/en/dataset.php. The
simulation starts with a base population (F0) of 1,020 unrelated individuals (20 males and
1,000 females). The first generation (F1) was generated by randomly mating each of the 20
founder males with 50 females. Each of the next three generations (F2-F4) also consisted of
20 males and 1,000 females and was generated following the same principle. The simulated
genome consisted of five chromosomes each spanning 100 Mb with 2,000 equally distributed
SNPs. To select subsets of informative individuals under REL and KCO (see description
below) we computed an identity by descent (IBD) genomic relationship matrix (G) using
Germline Gusev et al. 2009, whilst PED was applied on the simulated pedigree structure.

Selecting informative individuals for genotype imputation

Subsets of informative individuals were selected according to four different strategies
including the identification of key contributors (KCO), two commonly applied methods
previously outlined by Boichard (2002) (PED) and Goddard and Hayes (2008) (REL) and
individuals selected at random (RAN). In order to evaluate the performance of the different
subsets of informative individuals for genotype imputation 20% of the SNPs (2,000 SNPs)
were randomly set to missing across the genome in the target populations, whilst the missing
SNPs are equally distributed over five MAF classes (MAF 0>0.1, MAF 0.1>0.2, MAF
0.2>0.3, MAF 0.3>0.4 and MAF 0.4>0.5). After selecting subsets of informative individuals,
phasing of the selected reference populations was performed using the program FImpute
(Sargolzaei et al., 2014) including the pedigree information of the selected individuals. The
phasing accuracy between the inferred haplotype phase and true haplotype phase was
examined using the switch-error-rate metric (Browning & Browning, 2002). Finally the
phased reference populations were used to impute the missing SNPs in the remaining
population. The accuracy of imputation was assessed by calculating the genotype
concordance between true and imputed genotypes (gcTI). To assess imputation accuracy
across the five selected MAF classes we additionally calculated the correlation between true
and imputed genotype (rTI). Phasing and imputation accuracy was evaluated for five different
scenarios by subsequently increasing the number of informative individuals from 20 to 100 in
increments of 20. Imputation of the target populations was also performed with FImpute
(Sargolzaei et al., 2014), as described above.

Results and Discussion
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Phasing accuracy increased as the number of informative individuals increased within
all selected reference populations, including when subsets of individuals were selected at
random (Figure 1A). Selected reference populations under KCO consistently resulted in the
highest phasing accuracy (lowest switch error rates) of all selected reference populations,
whilst PED and REL performed worse than RAN individuals.

Similarly increasing the number of individuals included in the reference populations
increased imputation accuracy under all four methods. However, the rate of improvement in
imputation accuracy was slightly different across the applied methods (Figure 1B).
Imputation accuracy was highest when reference populations were selected under KCO
strategy, followed by PED, whilst selecting individuals under REL performed no better than
selecting individuals at RAN, except including a subset of 20 individuals in the reference
population. Imputation accuracy reached a plateau at 87% under PED when the highest
number of individuals were selected resulting in only small differences between the
imputation accuracies of PED, RAN and REL, whilst KCO performed significantly better
than the other applied strategies (91.5%).

Table 1 illustrates the imputation accuracy according to each of the five selected MAF
classes including a maximum number of 100 individuals in the reference population. Once
again the REL strategy was the least efficient strategy to impute the missing genotypes across
all MAF bands, except to the MAF 0.4<0.5 class. Again, KCO strategy resulted in the highest
imputation accuracy across all MAF classes.

Figure 1. Phasing and imputation accuracy of selected subsets according to the four different
applied strategies (KCO, PED, RAN and REL).

Table 1. Imputation accuracy (gcTI and rTI) of the five selected minor allelic frequency classes
(MAF) including a maximum number of 100 individuals in the reference population.

MAF classes KCO PED REL RAN
gcTI rTI gcTI rTI gcTI rTI gcTI rTI

MAF 0>0.1 96.97 84.19 95.66 73.54 95.10 66.04 95.45 72.16



MAF 0.1>0.2 92.92 85.40 89.97 77.56 88.62 73.77 89.78 77.44
MAF 0.2>0.3 90.38 86.84 86.21 79.74 85.11 77.71 85.61 78.81
MAF 0.3>0.4 89.17 87.87 84.79 81.93 83.67 80.28 83.97 80.81
MAF 0.4>0.5 88.02 87.70 83.83 82.46 82.57 80.85 82.50 80.68

Conclusion

In this study we demonstrated that the identification of key contributors (KCO) also increases
imputation accuracy of target populations, besides phasing accuracy of selected reference
populations (Neuditschko et al., 2017), compared to other commonly used methods (PED and
REL) and that it becomes feasible to significantly increase the imputation accuracy of rare
variants with MAF >0.1. For general use and application we have assembled an online open
access platform for the identification of key contributors within complex populations
(https://github.com/esteinig/netview).
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