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Abstract. A major challenge of agriculture is to improve the sustainability of food production systems in
order to provide enough food for a growing human population. Pests and pathogens cause vast yield
losses, while crop protection practices raise environmental and human health concerns. Decision support
systems provide detailed information on optimal timing and necessity of crop protection interventions, but
are often based on phenology models that are time-, cost-, and labor-intensive in development. Here, we
aim to develop a data-driven approach for pest damage forecasting, relying on big data and deep learning
algorithms. We present a framework for the development of deep neural networks for pest and pathogen
damage classification and show their potential for predicting the phenology of damages. As a case study,
we investigate the phenology of the pear leaf blister moth (Leucoptera malifoliella, Costa). We employ a set
of 52,322 pictures taken during a period of 19 weeks and establish deep neural networks to categorize the
images into six main damage classes. Classification tools achieved good performance scores overall, with
differences between the classes indicating that the performance of deep neural networks depends on the
similarity to other damages and the number of training images. The reconstructed damage phenology of
the pear leaf blister moth matches mine counts in the field. We further develop statistical models to recon-
struct the phenology of damages with meteorological data and find good agreement with degree-day mod-
els. Hence, our study indicates a yet underexploited potential for data-driven approaches to enhance the
versatility and cost efficiency of plant pest and disease forecasting.
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INTRODUCTION

Agriculture is facing major challenges concern-
ing food security and food production for a global
human population predicted to grow to nine bil-
lion by 2050 (Godfray et al. 2010). Besides shifting
toward more plant-based diets and decreasing

food waste (West et al. 2014, Shepon et al. 2018),
sustainable intensification is necessary for food
and environmental security (Godfray et al. 2010,
Garnett and Godfray 2012). The rapidly growing
field of precision agriculture uses modern
information technology, including computer
vision and artificial intelligence, and provides
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enormous potential to contribute to the goals of
more sustainable agriculture (Bongiovanni and
Lowenberg-deBoer, 2004, Lindblom et al. 2017,
Patrı́cio and Rieder 2018). Referred to as “smart
farming,” technological development is foreseen
to support a more efficient use of natural
resources and better target plant protection from
pests and pathogens while minimizing hazards to
environmental and human health (Chakraborty
and Newton 2011, Tilman et al. 2011, Garnett
et al. 2013, Walter et al. 2017). Pests and patho-
gens are responsible for large yield losses (Oerke,
2006) and are often counteracted with pesticides
(Lamichhane et al. 2015). Rising concerns regard-
ing the negative externalities of pesticides on
human health and environmental safety (Tegt-
meier and Duffy 2004, Geiger et al. 2010, Pimentel
and Burgess 2014) foster strategies to reduce the
risks from their use without compromising pro-
ductivity and profitability (Lechenet et al. 2017).
Reliable pest and pathogen detection and predic-
tion support more timely and precise interven-
tions, and thus reduced pesticide use.

Machine learning has great potential to assist
the development of innovative methods for pest
and pathogen management, supporting more sus-
tainable plant protection (Behmann et al. 2015).
The identification of pest and pathogens and the
detection of damages on crops are challenging for
farmers, yet crucial for the decision on appropri-
ate control measures (Martinelli et al. 2015,
Lamichhane et al. 2016). Deep neural networks
(DNNs) and algorithms for image classification
(Goodfellow et al. 2016) can serve the detection of
pests and pathogens for plant protection (e.g.,
Mohanty et al. 2016, Sladojevic et al. 2016, Fer-
entinos 2018). For example, convolutional neural
networks (CNNs; Krizhevsky et al. 2012, Szegedy
et al. 2015) have been used to identify different
pathogens on apple leaves, based on image data
(Liu et al. 2018, Zhong and Zhao 2020), and for
the classification of insect pest species occurring
on crops (Cheng et al. 2017, Thenmozhi and
Reddy 2019). The goal of these technological
implementations is to help growers to recognize
and detect pests and pathogens in the field, foster-
ing faster and more self-reliant evaluation of the
pest situation in situ and support decision-
making processes to optimize yields in a sustain-
able way (e.g., Sladojevic et al. 2016). Appropriate
timing for application of pest control measures is

not trivial (Tang et al. 2010), and anticipating the
damage can improve application precision. Tem-
poral precision of application of pest control mea-
sures can increase the efficacy and reduce the
number of required applications, and therefore
lower the total amount (Möhring et al. 2020).
Therefore, advancing novel technologies may lead
to faster and more efficient recognition processes
and eventually contribute to decrease risks associ-
ated with application of pest control measures, as
well as yield losses.
Decision support systems (DSS) assist crop pro-

ducers with the surveillance, decision on optimal
timing, and anticipation for the need of applica-
tion of pest control measures (Samietz et al. 2007),
and big data in combination with deep learning
can increase the precision of DSS. In general, DSS
for pests and pathogens rely on phenological
models, where the timing of crucial events in the
life cycle of those damaging organisms, measured
under controlled temperature conditions, is cou-
pled with meteorological data to predict their sea-
sonal occurrence. Phenological models have
reached good performances for the prediction of
pest and pathogen occurrence, offering an effec-
tive complement to field observations (e.g.,
Schaub et al. 2017), but are still time- and cost-
intensive in development. The resulting models
often target specific pest–crop or pathogen–crop
systems, are location-dependent (Donatelli et al.
2017), and rarely updated once established. In the
meantime, the life cycles of many insects are
altered by changing climate conditions (King-
solver et al. 2011). With warming climate, pheno-
logical shifts and disruption of synchrony
between host plants and pests are widespread
reactions (Forrest, 2016). This leads to increasing
discrepancies between model predictions and
actual observations, because forecast models at
the core of DSS are seldom reparametrized to
account for altered insect biology. Further, climate
change promotes the introduction and spread of
invasive species into newly suitable, so far uncolo-
nized regions (Bebber et al. 2013, Grünig et al.
2020), requiring fast development of new DSS.
Novel technologies to analyze big data based on
deep learning (LeCun et al. 1989, 2015) can sup-
port monitoring and deliver the baseline for
developing phenological models needed, in com-
bination with weather data and forecasts, to antic-
ipate pest damages.
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Using 52,322 photographs taken under field
and standard conditions during the spring–sum-
mer of 2019, here we develop a framework
toward pest phenology forecasting based on big
data and deep learning algorithms. We focus on a
proof of concept for the development of damage
classification tools, which, in combination with
meteorological data, are used to produce pheno-
logical models (Fig. 1). We use DNNs to classify
damages on apple tree leaves and investigate the
phenology of six main classes of damages pre-
dicted by the DNNs. We couple the predicted
occurrence of damages with meteorological data
to model damage phenology. Our case study tar-
gets the apple crop because it is the most impor-
tant fruit crop in Switzerland, with a production
varying between 250,000 and 450,000 tons per
year depending on weather (SBV 2019). Concern-
ing damages, the focus lays on the mines of the
pear leaf blister moth (Leucoptera malifoliella Costa,
Lepidoptera: Lyonetiidae; from here on blister
moth), a pest that has recolonized orchards in cen-
tral Switzerland since 2013 (Zwahlen and Hunke-
ler 2017). The blister moth prefers apple trees as
host plants and in case of heavy infestation can
affect the photosynthesis and cause premature
leaf drop (Ivanov 1976; www.cabi.org). Larvae of
the blister moth are solitary miners producing
characteristic brown, round mines that are distin-
guishable from physical damages. Our working
hypotheses are as follows:

1. We expect that the development of DNNs to
categorize different classes of damages on
apple leaves is feasible with a subset of the
52,332 images collected during one season.

2. We expect that by applying the resulting
classification tools to the full data set, we
can reconstruct the phenology of blister
moth mines, which should match conven-
tional monitoring methods.

3. We expect to find a meteorological signature
in damage phenology of the blister moth,
providing the basis for the development of
statistical prediction models.

METHODS

Data collection
We sampled leaves and collected images

weekly between 15 April and 28 August 2019 in

three apple orchards in central Switzerland, in
Kleinwangen (47°11049.3″N; 8°17022.8″E; 536 m
a.s.l.), Gelfingen (47°13012.9″ N; 8°16010.0″ E;
557 m a.s.l.), and Waedenswil (47°13018.4″ N;
8°40038.6″ E; 483 m a.s.l.; see Appendix S1: Fig.
S1 for map with the locations). Using smart-
phone cameras, we collected pictures of leaves in
the field (from here on referred to as field pic-
tures) and sampled leaves to take pictures under
standardized conditions in the laboratory (from
here on standardized pictures). Taking pictures
using smartphones results in pictures of a similar
quality expected if they were taken by growers,
untrained citizen scientists or from automated
devices such as drones. We conducted a struc-
tural sampling in the three orchards. In each
location, we sampled at least 400 leaves per
week. With this structural sampling, we aimed to
capture a representative set of pest symptoms.
As the orchards have different numbers of trees
planted in a different number of rows, we con-
ducted three different sampling strategies for
both pictures and leaf collection. In Kleinwan-
gen, we took two pictures from every third and
in Gelfingen two pictures from every fourth tree
per row. In Waedenswil, we took four pictures
from every tree. Field pictures and leaves were
taken from the lower part and upper part of the
trees by random choice of the collector. Collected
leaves were kept in a 3°C storage room before we
took pictures under standardized conditions. We
used scotch tape to stick the leaves on a white
paper in order to have a uniform background.
The pictures were taken with one of two different
mobile phones, an IPhone 6 (8 megapixel cam-
era) and a Sony Xperia X (23 megapixel camera).
At the time of sampling, in Kleinwangen and
Gelfingen, extension services were conducting
tests on the efficacy of pesticides targeted against
blister moth. We distinguished between treated
and untreated sections of the orchards for the
image data collection, irrespective of the man-
agement of the treated trees.
In parallel to the leaf and picture sampling,

population density of blister moth was moni-
tored with pheromone trapping and mine count-
ing in Gelfingen. The orchard was exposed to
testing of eight different control methods includ-
ing a control section. We placed one trap (Delta-
trap pheromone traps, Andermatt Biocontrol AG,
Grossdietwil, Switzerland) in the control section
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to document the occurrence of adults on a
weekly basis. Weekly, 50 randomly selected
leaves per treatment section were inspected visu-
ally for the presence of mines, resulting in 400
leaves per week. Each leaf was carefully checked
by eye, and the occurrence of mines was noted.
We registered the total number of mines per 50

leaves. The collection of the data set was done in
about 50 workdays.

Meteorological data
Meteorological data were extracted from the

gridded data set (2 × 2 km) obtained from the
Swiss Federal Office of Meteorology and

Fig. 1. Conceptual figure showing the overall goal of the framework for developing pest damage forecasting
tools. Data collection can be implemented with drones or citizen science approaches (a). The collected data can
be used to train deep neural networks (DNN) for image classification to recognize pest and pathogen damages
(b). Once the classification tool is established, predictions using deep neural networks can be used for recon-
structing the phenology of pest damages (c). Coupling damage phenology with meteorological data enables
establishing phenology models (d). Eventually, these phenology models can be used for predictions and in DSS,
aiming at informing on pest occurrence to support growers and experts, for instance by implementing the tool in
a smartphone app (e). Image classification tools can then reinforce the data collection, by making it available to
citizen scientists (f). In this study, we focus on the deep learning and phenology modeling aspects within this
framework.
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Climatology (MeteoSwiss; meteoswiss.admin.ch).
Daily data were extracted for the year 2019 and
aggregated to the weekly resolution in order to
match the weekly sampling rate of the damage
monitoring. The statistical models employed to
create the gridded data are described in Ceppi
et al. (2012) and Frei (2014) (daily minimum,
maximum and mean temperature), Frei and Isotta
(2019) (precipitation), and Dürr and Zelenka
(2009) (solar radiation). To track phenology, we
further calculated the accumulated temperature
sum (i.e., degree-days) as the cumulative sum of
the mean temperature over 5°C on daily basis.

Data preparation
In total, we gathered 52,322 pictures of apple

leaves. We manually classified 8,735 randomly
sampled standardized (4629) and field pictures
(4106) into damage classes. We arbitrarily
defined 42 classes of distinguishable damages,
including classes containing combined damages
and classes with a low number of pictures (less
than 100). We focused on seven classes with at
least 100 pictures for further processing (Fig. 2):

1. Undamaged: no damages detected on the
leaf.

2. PLBM: mines of blister moth detected;
3. Physical damages: holes, cracks, fissures, or

deformations;
4. Brown spots: brownish spots distinguishable

from blister moth mines;
5. Lepidoptera: rolled in leaf edges indicating

pupae of Lepidoptera species;
6. Mildew: powdery mildew (Podosphaera leu-

cotricha) detected;
7. Feeding: feeding damage from herbivore

insects.

The manual annotation of the pictures was
done in about 5 – 10 workdays.

We cropped all images to an extent of 2840 ×
1560 pixels in the center of the image to focus on
the leaf rather than the background (e.g., Fig. 2
left-most pictures of class Undamaged).

Deep neural networks
We used DNNs to apply image classification

of the entire image in order to allocate it to one
out of several classes. We implemented our
deep neural network approach in R (version

3.5.3; R Core Team 2019), using the R-package
“reticulate” (version 1.13.0-9003; Ushey et al.
2019) to open an interface to python. We used
“Keras” (version 2.2.5.0; Allaire and Chollet
2019) and “Tensorflow” (version 1.9; Allaire and
Tang 2019) R-packages as DNN frameworks.
We loaded image data with the image_data_gen-
erator function of the “Keras” R-package.
Images were imported and resized to 256 × 256
pixels with three channels (i.e., RGB color chan-
nels) and rescaled to values between 0 and 1.
After preliminary experiments with varying and
also larger patch sizes of 512 × 512 pixels, we
found empirically that 256 × 256 pixel patches
perform best. Further, we applied data augmen-
tation to the training data set during the image
import. Data augmentation is a common strat-
egy to increase the number of images in the
training data set. We applied the following
specifications in the image_data_generator func-
tion to augment the data: zooming (range =
0.4), rotations (range = 90°), width and height
shifts (range = 0.2), shearing (range = 0.2), and
horizontal and vertical flips. We tested alterna-
tive data augmentation settings with less zoom-
ing (range = 0.1) and rotations (5°), as well as
with restricted zooming only (see Appendix S1:
Figs. S2 and S3 for model performance). As net-
work structure, we used the ResNet50 (He et al.
2016) model, loaded with weights pre-trained
on ImageNet (Deng et al. 2009) as base for our
model architecture. We fine-tuned all layers of
the ResNet50 network and added one dense
layer with 256 nodes and a ReLU activation
function, as well as an output layer with a soft-
max activation function on top of the ResNet50
to adapt to our data set. Moreover, we added
dropout (0.5) after the ResNet50 network and as
well after the densely connected layer to pre-
vent model overfitting. Further, we used an
RMSprop optimizer with a base learning rate of
0.0001 and a decay of 0.00001 for gradient des-
cent. We set the mini-batch size, which defines
how many images the DNN takes into account
per step for calculating the model error and
updating the model coefficients, to 32. All net-
works were trained for 100 epochs (i.e., itera-
tions over the full training data set).
We trained DNNs on different combinations of

classes (i.e., different classification tasks). First,
we trained DNNs for each damage class to

 v www.esajournals.org 5 October 2021 v Volume 12(10) v Article e03791

EMERGING TECHNOLOGIES GRÜNIG ET AL.



distinguish images of this class, from all other
images (i.e., all other classes as one summary
class), resulting in six classification tasks. Second,
we trained full model DNNs to classify the six
main classes (PLBM, Undamaged, Physical dam-
ages, Brown spots, Lepidoptera, and Mildew) simul-
taneously in one DNN. In a preliminary analysis
step, we used Feeding and Physical damages as
independent classes, but compounded them for
the final analysis because DNNs struggled with
differentiating these two classes. We trained
DNNs for the same classification tasks with field
pictures. To establish DNNs, we split the catego-
rized images of each class into five subsets for a
fivefold cross-validation. DNNs were trained on
four subsets (80% of the data) and tested on the
left-out subset (20%). From the 80% training
data, 20% were used for validation to tune
hyperparameters (i.e., settings to control the
learning process of a deep neural network). This

procedure was repeated five times resulting in
five different DNNs per classification task. Addi-
tionally, we evaluated the ability of the DNNs to
generalize using a geographic validation as an
alternative train-test split strategy. As more pic-
tures were recorded at the two main sites (Gelfin-
gen and Kleinwangen) and less pictures at the
smaller site in Waedenswil, a geographic cross-
validation, training DNNs on two sites, and test
on a third were not possible, because there were
not enough images to train the model for some
classes. Therefore, we trained the DNNs on pic-
tures from Gelfingen and Kleinwangen and
tested their ability to generalize on the images
from Waedenswil. We measured the perfor-
mance of DNNs for each classification task on
the test set with F1 score averaged over the five
DNNs per classification task. F1 scores (Eq. 1)
were calculated with the scores for true positives
(TP), false positives (FP), and false negatives

Fig. 2. DNN performance for the 14 classification tasks measured as classification accuracy. Boxes show the
classification accuracy variation over the fivefold cross-validation. Red boxes show the results for standardized
pictures and blue boxes for field pictures. For the results of F1 scores, see Appendix S1: Fig. S2. Images show the
different classes considered in the study. F.l.t.r: Undamaged, PLBM, Physical damage, Lepidoptera, Brown spots, and
Mildew. Right-most boxes show the performance of the full model.
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(FN), resulting in values ranging from 0 to 1, 1
being perfect classification:

F1 ¼ TP
ðTPþ 0:5� ðFPþ FNÞÞ (1)

Additionally, we measured performance with
classification accuracy as the percentage of
correctly classified images. DNNs were evalu-
ated with the performance on the test data set,
which was not included in the construction of
the network.

Coupling pest damage with meteorological data
We used DNNs to classify all images from

Kleinwangen and Gelfingen, because in these
two locations we found blister moths. We used
the predict_class and the predict_proba function of
the “Keras” R-package (version 2.2.5.0; Allaire
and Chollet 2019) to obtain predictions on the
class and the pseudo-probabilities per class for
all images using the full model DNNs. The
pseudo-probability prediction is output scores
from DNNs showing how confident the DNN is
in predicting a class for an image. We grouped
the predictions into locations and dates. Further,
we calculated the percentages of damaged leaves
per sampling event, scaling the number of dam-
aged leaves of each class with the total number
of collected leaves to correct for uneven sam-
pling, as the sampling events did not result in
the exact same number of images. We used
GLMs to model the percentage of damaged
leaves with weekly meteorological data as pre-
dictor variables. Climatic variables included
growing degree-days (i.e., cumulative sum of
mean temperature over base temperature of
5°C), mean temperature, precipitation, solar radi-
ation, and diurnal temperature range. We ran
GLMs for each meteorological predictor and one
multivariate GLM with all predictors, allowing
second-degree polynomials and assuming bino-
mial error distribution. We used the ecospa-
t.adj.D2.glm function of the “ecospat” R-package
(version 3.0; Broennimann et al. 2018) to obtain
model deviance as adjusted D2 values of all mod-
els. Additionally, we use the glarma function of
the “glarma” R-package (version 1.6-0, Dun-
smuir and Scott 2015) to run GLARMA (general-
ized linear autoregressive moving average)
models for the same predictor variables, to check
whether accounting for temporal autocorrelation

would change the model estimation of
parameters.

RESULTS

Data collection
We collected 52,322 pictures of apple tree

leaves in total over 19 weeks of sampling. 35,903
pictures were taken in the field and 21,087 under
standardized conditions. For the two locations,
where we used the image data to reconstruct the
blister moth phenology, we gathered 14,466
images in Gelfingen and 18,384 in Kleinwangen.
We did not find different signals from the differ-
ent treatments and therefore only present the
results for the collection of treated and control
section. From the 8,735 categorized pictures, we
found that class PLBM contained 1,390 images,
Undamaged 1,415, Physical damages 1,139, Brown
spots 2,025, Lepidoptera 103, and Mildew 134
images.

Deep neural networks
We established DNNs for 14 different classifi-

cation tasks of apple tree leaves. F1 scores for
classification tasks of standardized pictures ran-
ged from 0.69 to 0.93 with the exception of the
class Lepidoptera (0.32), where the number of
training images was very low (with a total of 103
manually classified images, for model training
we used between 26 and 44 images depending
on classification task (standardized or field) and
the cross-validation chunk). Classification accu-
racy ranged from 91.3% to 99.5%. The full model
including all six classes reached a F1 score of 0.89
(standard deviation across the five cross-
validation runs: �0.035) and a classification
accuracy of 95.4% (�1.5%). DNNs performed
generally more poorly on images taken in the
field (Fig. 2). F1 scores for field pictures ranged
from 0.52 to 0.90 with the exception of physical
damage where no F1 score could be determined
because none of the test images was assigned to
Physical damages, meaning that this class was not
recognized by the DNN based on field pictures.
Classification accuracy for all classes ranged
from 87.5% to 99.4%. The full model reached a F1
score of 0.85 (�0.02) and a classification accuracy
of 87.7% (�1.6%) for field images. For detailed
model performance of each classifier, see Appen-
dix S1: Fig. S4 and confusion matrices in
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Appendix S1: Tables S1–S8. Further, the geo-
graphic validation showed that the single class
DNNs were able to generalize to the pictures
from a different location for the classes Undam-
aged and Physical damages, showing similar per-
formance as the fivefold cross-validation, but
struggle for the classes of Brown spots and Mil-
dew. Because in Waedenswil we found no PLBM
marks and only one picture with Lepidoptera, we
were not able to test the generalization for those
classes and the full model (see Appendix S1:
Table S9 for details).

We used the trained DNNs to classify the
images of the data set that were not categorized
a priori. From the five DNNs trained for the
cross-validation for the full model, we selected
the one with the best performance based on F1
score. With the full model for standardized pic-
tures, we found 7627 images of class PLBM, 5598
Undamaged, 3063 Physical damages, 156 Brown
spots, 122 Lepidoptera, and 850 Mildew. The full
model for field pictures resulted in a prediction
of 7350 PLBM, 10,638 Undamaged, 899 Physical
damages, 131 Brown spots, 282 Lepidoptera, and 693
Mildew. The full model for field images was
unable to detect the class Lepidoptera (see Appen-
dix S1: Fig. S5 for reconstructed phenologies of
all damage classes). We used the DNNs to recon-
struct the phenology of the blister moth (Fig. 3).
We found very similar patterns for the two loca-
tions, with an increase in blister moth mines in
mid-June and a first peak in early July. Standard-
ized and field pictures show very similar results,
although field pictures indicated the peak one
week later than the standardized pictures.

Although we found different DNN perfor-
mances for the standardized pictures and the
field pictures, predictions to the full data set
resulted in very similar patterns of the phenol-
ogy of the different damage classes. Further,
we compared the blister moth phenology pre-
dictions of the DNNs with count data of blister
moth adults in traps and mines obtained from
surveys in the same orchards (Fig. 4). The
count data support our findings for the blister
moth phenology based on the predictions of
DNNs. The phenology of the trapped adults
explained patterns of the mines, which start to
emerge 3–4 weeks after the peak of a genera-
tion of adults. These results matched well with
literature descriptions of development times for

one generation (e.g., 36 days at 18°C; Sáringer
et al. 1985). We also observed the same pattern
of decreasing numbers of mines in early to
mid-July, which is explained by the simultane-
ous emergence of new leaves and the gap
between the first and the second generations of
blister moth larvae. Mine counts and recon-
structed mine phenology showed a Pearson
correlation coefficient between 0.938 and 0.978
for both locations with standardized and field
pictures.

Coupling pest damages with meteorological data
We quantified the relationship between the

phenology of the blister moth and climate using
GLMs (Fig. 4). For both locations and for stan-
dardized and field pictures, we found that
degree-days is the most important variable, with
adjusted D2 values between 0.950 and 0.967
(Table 1). The full model explained only slightly
more of the deviance ranging from 0.956 to
0.969. We found similar results with GLARMA
models, confirming that degree-days is the best
predictor for blister moth phenology from
Gelfingen, but only the second best predictor for
Kleinwangen after mean temperature (Table 2).

DISCUSSION

In this study, we tested the feasibility of differ-
ent segments of a framework for developing pest
damage forecasting models, relying on big data,
DNNs, and meteorological data (Fig. 1). Our
case study on blister moth mines suggests that
DNNs coupled with meteorological data are suit-
able tools for the proposed method. We use
DNNs to build image classification tools to clas-
sify the damages of a large data set of apple leaf
images and to reconstruct the phenology of dif-
ferent damage classes (Appendix S1: Fig. S5).
Using blister moth as a case study species, we
show that the blister moth phenology predicted
with DNNs matched count data of mines and
adults in the field. Finally, we quantify the phe-
nology of blister moth mines with meteorological
variables and show that phenological models
based on degree-days are well fitting the blister
moth phenology. While we show here that the
proposed framework is feasible in principle, for
the full implementation of the framework, data
collection processes need to be optimized and
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the phenological models need to be validated
with independent data.

Our results show that DNNs are suitable tools
for pest damage classification based on image
data, similarly as it has earlier been shown for
other classification tasks (e.g., Mohanty et al.
2016, Cheng et al. 2017). Trained DNNs reached
good model performance for categorizing blister
moth damages with a classification accuracy of
93.8% (F1 score of 93.2); all other single class
DNNs were trained successfully with F1 scores
above 0.86 except Physical Damages (0.69) and
Lepidoptera (0.32) (see Appendix S1: Figs. S6 and
S7 for some examples of misclassifications). In

general, we observe better and more robust
results for classes where more data for training
were available. DNNs classifying multiple
classes were struggling with distinguishing some
of the classes, but performed well overall (F1
score of 0.89 for six classes). Compared to studies
predicting several classes of pathogens, the accu-
racies of our DNNs are slightly lower (e.g.,
Oppenheim and Shani 2017 reached 96% accu-
racy with five classes; see Barbedo 2018 for an
overview). A reason for this could be that the
manually classified part of our data set is rather
small and applying a cross-validation lowers the
number of pictures available to train the DNNs.

Fig. 3. Comparison between blister moth mines phenology reconstructed with DNNs (red line) and count data
of mines from the field (blue line). The black line marks the count data of adults caught in traps. The hatched
areas in the background show a 4-week timespan between the peaks of the blister moth generations (adults) and
the local peak of mines. Panels show the data for (a) Gelfingen standardized pictures, (b) Gelfingen field pictures,
(c) Kleinwangen standardized pictures, (d) Kleinwangen field pictures.
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Fig. 4. Comparison of the seasonal evolution of the inferred damage phenology (DNN) and the phenology
modeled with GLMs. Panels show the data for (a) Gelfingen standardized pictures, (b) Gelfingen field pictures,
(c) Kleinwangen standardized pictures, and (d) Kleinwangen field pictures. The x-axis starts on the 1.1.2019 and
shows the calendar weeks. Sampling started in week 16 and lasted for 19 weeks.

Table 1. Model deviance (as adjusted D2 values) for
GLM on blister moth phenology with different mete-
orological predictor variables.

Model Gel. stand. Kle. stand. Gel. field Kle. field

GDD 0.966 0.967 0.959 0.950
Tmean 0.841 0.767 0.773 0.804
Precip 0.006 0.014 0.032 0.018
Srad 0.332 0.287 0.286 0.317
Diur 0.202 0.176 0.211 0.194
Full 0.969 0.965 0.961 0.956

Note: Degree-days above 5°C (GDD), mean temperature
(Tmean), precipitation (Precip), radiation (SRad), diurnal tem-
perature (Diur), and the model with all predictors (Full).

Table 2. Akaike’s information criterion (AIC) for
GLARMA models on blister moth phenology with
different meteorological predictor variables.

Model Gel. stand. Kle. stand. Gel. field Kle. field

GDD 344.6685 569.2 443.3927 534.1602
Tmean 346.8743 452.2735 504.6914 355.1499
Precip 2107.805 1949.889 2323.896 1555.169
Srad 448.142 592.8213 465.8917 396.9868
Diur 841.1444 795.4927 928.275 551.5733
Full 185.3556 233.9368 268.5195 227.7823

Note: Degree-days above 5°C (GDD), mean temperature
(Tmean), precipitation (Precip), radiation (SRad), diurnal tem-
perature (Diur), and the model with all predictors (Full).
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In general, we observe that DNNs struggle with
distinguishing between classes with similar
symptoms, for example, between Physical dam-
ages and Feeding, which we discriminated in pre-
liminary analyses. Another reason for the
decreasing model performance with more classes
may lay in the co-occurrence of damages on one
leaf, but general solutions to properly identify
such simultaneous damages are still lacking (Bar-
bedo 2018). Further, we show that DNNs are also
capable of classifying pest damages with images
taken under field conditions (see Results, Deep
neural networks), which is crucial to develop use-
ful pest or disease recognition tools, as the goal
should be the application in the field (Sladojevic
et al. 2016, Picon et al. 2019). Overall, DNNs
established with field pictures show good results,
but as expected, reach slightly lower perfor-
mance than DNNs for standardized pictures,
because external influences such as shading
effects, multiple leaves, other plant parts, or irrel-
evant objects in the background can be dis-
turbing (Ferentinos 2018). Particularly, DNNs
struggled with the class of Physical damages. Still,
the DNN for the class PLBM with field pictures
reached a F1 score of 0.90 (classification accuracy
of 93.1%). The full model DNN for field pictures
was successful with an F1 score of 0.85 and clas-
sification accuracy of 87.7%. Our case study
shows that the development of pest damage clas-
sification tools using DNNs is realizable, allow-
ing to use those tools to obtain the phenology of
classes by analyzing big data sets, given that suf-
ficient data are available.

We highlight that reconstructing damage phe-
nology with DNNs, coupled with meteorological
data, opens up new possibilities to produce phe-
nological models for pest forecasting. Big data
science has recently been proposed to help to
overcome current limitations in pest forecasting
(Orlandini et al. 2018). In our case study, we find
that degree-days is the most important variable
to model blister moth phenology. Degree-days
have been shown to be a reliable predictor of
insect development (e.g., Cayton et al. 2015) and
are important components in phenology models
for insects (Nietschke et al. 2007). This is impor-
tant for the development of operational systems,
as in many regions of the world temperature
data are available at high spatial and temporal
resolution. We validate the reconstructed

phenology of the blister moth, with count data
on adults and mines obtained from the same
study sites, showing that classification tools are
able to reconstruct the real phenology. Further,
we show that our approach is suitable to recon-
struct the phenology of other classes and there-
fore could be used to investigate not only the
phenology of insects but also the phenology of
other types of damages (e.g., Mildew). With suffi-
cient image data, the prediction approach may
also be implemented for pests and pathogens to
find meteorological signals behind their seasonal
occurrence or the occurrence of the entailed dam-
ages. Successful recognition tools for pathogens
have already been developed (e.g., Fuentes et al.
2017, Liu et al. 2018), and seasonal occurrence of
pathogens is often limited by abiotic factors
(Rossi et al. 2010). In addition, we emphasize
that the framework for the establishment of this
approach would also be suitable for invasive spe-
cies phenology modeling, due to the potential of
fast implementation. However, expert recom-
mendations on management interventions need
to be based on solid testing of control strategies
by plant protection experts. Particularly for inva-
sive species, this is crucial to implement sustain-
able control. We find promising results in this
case study, underlining that the proposed frame-
work could bring new opportunities for pest
forecasting, given that new methods will help to
overcome the lack of data availability.
While this case study highlights new possibili-

ties for pest damage forecasting, we came across
some limitations that need to be addressed in
future studies. One of the main limitations is the
low number of images of some classes we used
to train the DNNs, which is also limiting the abil-
ity of the DNNs to generalize to an independent
data set. Here, we use only a subset of our data
set where the frequency of the different classes is
not equally distributed. This means that for some
classes, only few images are available for training
and evaluation of a DNN. Meanwhile, previous
studies establish DNNs using the full data of
large data sets (e.g., PlantVillage) for model
training and evaluation (e.g., Mohanty et al.
2016). However, such image data are limited and
previous studies in the field of plant disease clas-
sification often rely on the same data set and sim-
ilar tools, yielding in a low variation between the
results of these studies (Barbedo 2018, Arsenovic
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et al. 2019). Increasing the input data for DNNs
could therefore promote higher robustness and
performance of the classification tools of some
classes (Sladojevic et al. 2016) and increase the
generalization ability of the DNNs. Further,
within our sampling period, the variation in
meteorological conditions was rather small.
Longer-term surveys are required to capture a
broader scope of meteorological settings, leading
to more robust phenological models. Similarly,
data from long-term monitoring programs are
needed to validate phenological models. With
the implementation of new data collection strate-
gies, these limitations may be overcome.

To address the limitations of the current work,
as well as provide the base of the proposed
framework for pest forecasting, innovative data
collection strategies must be established. We
present perspectives and potential approaches
for acquisition of data for the proposed frame-
work for pest damage forecasting. The main dis-
advantage of deep learning is the amount of
data needed (Kamilaris and Prenafeta-Boldú
2018), and not many agricultural image data sets
are publicly available (Kamilaris et al. 2017,
Arsenovic et al. 2019). To overcome this data
scarcity, we propose two approaches for data
collection. First, with the increasing number of
smartphones used worldwide, allowing to
record images, sound, and location, there is a
wide scope for gathering large data sets, in par-
ticular in the context of citizen science (Teacher
et al. 2013). In agriculture, particularly in rela-
tion to pest and pathogen monitoring, there is
pressing interest for this approach and farmers
are traditionally interested in participating in
research projects (Ryan et al. 2018). While citi-
zen scientists benefit from the classification tool
and the pest forecasting model, the collected
image data can be used to create a feedback
loop where new images can be used for updat-
ing the classification tool (see Fig. 1). Addition-
ally, an advantage of a citizen science approach
could come from detection of new invasive spe-
cies (Hulbert et al. 2017, Johnson et al. 2020), as
famers might want to inform themselves and
alert the responsible experts when they encoun-
ter a yet unknown damage. Finally, the accep-
tance for DSS is expected to be higher if users
are involved in their development (Lynch et al.
2000).

The second approach we propose here is the
implementation of drones (Floreano and Wood
2015). Drones are expected to revolutionize pre-
cision agriculture by delivering big data that can
be used for various purposes (Tripicchio et al.
2015, Finn and Donovan 2016). For example,
drones have been used for weed detection, irriga-
tion equipment monitoring, or crop health moni-
toring (Veroustraete 2015). Drones programmed
with GIS inputs and equipped with high-
resolution cameras (e.g., 15 megapixel; Shankar
et al. 2018) are suitable tools to collect data in a
structured way, which can be analyzed with
deep learning algorithms (Shankar et al. 2018).
Together, these approaches highlight opportuni-
ties to overcome the lack of image data sets on
pest and pathogens, allowing to advance with
the proposed framework for pest forecasting and
providing groundwork for other novel technolo-
gies supporting sustainable agriculture.

CONCLUSIONS

In conclusion, we present a framework for
developing pest monitoring and forecasting tools
that rely on big data and deep learning. A non-
representative survey suggested that farmers are
generally interested in the development of new
forecasting tools and that there is a demand for
new technologies with broad applicability in
plant protection. In this study, we focus on the
segments of this framework connected to build-
ing DNNs and coupling the phenology recon-
structed with those DNNs with meteorological
variables to produce phenology models. The case
study on blister moth phenology highlights that
this approach is feasible. DNNs showed good
performance on categorizing different classes of
damages with pictures of leaves taken under
standardized conditions and in the field. Further,
the phenology of the blister moth obtained from
DNNs matched the phenology observed with
count data in the field well. While damage classi-
fication tools are valuable instruments for pest
and pathogen monitoring, using those classifica-
tion tools to reconstruct the damage phenology
and coupling them with meteorological data will
promote new opportunities for early warning.
Together, this study highlights that big data and
modern technologies provide new opportunities
to advance sustainable plant protection. To
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overcome the scarcity in data availability, which
presents the main limiting factor for such data-
driven approaches, here we suggest to address
this issue with data collection based on citizen
science or drones. Increasing data availability
would not only support this framework for pest
damage forecasting, but also foster further devel-
opment toward applying modern information
technology to tackle current agricultural chal-
lenges.
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