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Highlights 8 

• Free volatile carboxylic acids are valuable for differentiating cheeses from 9 

Switzerland. 10 

• Ensemble algorithms can classify 90% of cheese samples correctly. 11 

• The most important feature is C1, followed by C3, C6, and iso-C4. 12 

• The application of the PyCaret library is a simple, efficient, and promising tool. 13 

• The evaluation of SHAP values is a means of cheese differentiation. 14 

 15 

Abstract 16 

In the first two decades of the 21st century, a wide range of analyses, including free volatile 17 

carboxylic acids (FVCAs), endeavoured to describe 10 different cheese varieties from 18 

Switzerland. The aim of the present work was to investigate whether these 10 cheese 19 

varieties could be classified by means of supervised machine learning (ML) techniques, as 20 

well as to analyse the importance of the features FVCAs in order to understand their role in 21 

characterising cheese varieties. Special emphasis was placed on SHAP values (SHapley 22 

Additive exPlanations). In total, 241 cheese samples were classified using different ML 23 

algorithms with the help of the PyCaret library; at least 90% were correctly classified with two 24 

ensemble algorithms: Extra Trees and Random Forest. The fewest misclassifications were 25 
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observed for Emmentaler AOP, Raclette du Valais AOP, and Formaggio d’Alpe Ticinese 26 

DOP, whereas most misclassifications occurred between Le Gruyère AOP and Berner 27 

Alpkäse AOP. The most important feature was C1, followed by C3, C6, and iso-C4, with iso-28 

C6 being the least important after C2 and C4. By means of the interpretation of SHAP values 29 

applied as a differentiating feature, key FVCAs were identified for most cheese varieties. This 30 

study represents a first step towards improved differentiation of cheese varieties.  31 

 32 

Keywords 33 

cheese, supervised machine learning, characterisation, differentiation, free volatile carboxylic 34 

acids, SHAP value 35 

 36 

 37 

Glossary 38 

FVCA free volatile carboxylic acid  

C1 formic acid 

C2 acetic acid 

C3 propionic acid 

C4 butyric acid 

iso-C4 isobutyric acid, 2-methylpropionic acid 

iso-C5 isovaleric acid, 3-methylbutyric acid 

iso-C6 isocaproic acid, 4-methylpentanoic acid 

SHAP SHapley Additive exPlanations 

GC gas chromatograph 

ML machine learning 

AOP appellation d’origine protégée 

RF Random Forest classifier 

ET Extra Trees classifier 

LR Linear Regression classifier 

LightGBM Light Gradient Boosting Machine 

 39 

1. Introduction  40 

Approximately 200,000 tonnes of cheese are produced in Switzerland every year, which 41 

corresponds to ~45% of the milk produced there (TSM Treuhand, 2021). Cheese production 42 

is therefore an economic sector of considerable importance, where a major part of the 43 
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cheese varieties is produced by local and artisan cheese dairies (Forney & Häberli, 2017; 44 

Schmitt, Keech, Maye, Barjolle, & Kirwan, 2016). The territorial associations of these 45 

varieties, the long tradition of cheese making, and the high cheese quality were the main 46 

reasons for several cheese consortia to apply for an AOP (appellation d’origine protégée), 47 

which is a protected designation of origin (Swiss PDO-PGI Association, 2023; FOAG, 2022; 48 

Maye, Kirwan, Schmitt, Keech, & Barjolle, 2016). In the year 2000, L’Etivaz was the first 49 

cheese in Switzerland to be so registered.  50 

This development increased interest in describing different cheese varieties at 51 

different ripening stages by means of a wide range of chemical, biochemical, biological, 52 

physical, and sensory analyses. However, most of these projects have been published, if 53 

ever, on a national level only. Table 1 summarises the cheese varieties, including references 54 

and consortia that have performed an analytical description of each variety. The aims of the 55 

individual cheese consortia were primarily to produce descriptive characterisations, but the 56 

ideas of classification and differentiation were also a driving force behind these projects. Only 57 

a comparison with other cheese varieties can answer the question of how one cheese variety 58 

can be distinguished from another (Coker, Crawford, Johnston, Singh, & Creamer, 2005). 59 

However, as these characterisations were carried out independently of one another, the 60 

goals of classification and differentiation remained unachieved. 61 

In recent years, machine learning (ML) techniques have gained importance, and at 62 

the moment, their applications in food safety, processing, quality, and authenticity are 63 

increasing almost exponentially (Jimenez-Carvelo, Gonzalez-Casado, Bagur-Gonzalez, & 64 

Cuadros-Rodriguez, 2019; Khan, Sablani, Nayak, & Gu, 2022; Wang, Bouzembrak, Lansink, 65 

& van der Fels-Klerx, 2022). ML is a branch of artificial intelligence that enables algorithms to 66 

learn continuously and improve upon (past) data and make predictions based on them 67 

(Alzubi, Nayyar, & Kumar, 2018). If the data are labelled, classification – a supervised ML 68 

technique – is additionally possible. This task requires the algorithms to learn how a label 69 

should be assigned to the data – in our case, determining cheese varieties from the analysed 70 

parameters, the so-called features. Depending on the underlying algorithm, ML techniques 71 
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can be grouped into classical (also called ‘conventional’) or deep learning, each supervised 72 

or unsupervised (LeCun, Bengio, & Hinton, 2015). Classical supervised ML algorithms are 73 

preferably used when dealing with analytical data (Koren et al., 2020; Magnus, Virte, 74 

Thienpont, & Smeesters, 2021; Pérez-Rodríguez, Gaiad, Hidalgo, Avanza, & Pellerano, 75 

2019; Wang et al., 2022). Supervised ML methods applied to measurements made on a 76 

chemical system are often called ‘chemometrics’ (Jimenez-Carvelo et al., 2019). Examples of 77 

chemometric classifications in food science can be found in several studies (Cocchi, 78 

Biancolillo, & Marini, 2018; de Andrade et al., 2022; Di Donato, Biancolillo, Mazzulli, Rossi, & 79 

D’Archivio, 2021). One strength of such an approach for the current study is the possibility of 80 

interpreting the results post hoc, using SHapley Additive exPlanations values (SHAP; see 81 

section 2.3), whereas deep learning does not allow a look ‘behind the scenes’. The 82 

application of deep learning classification algorithms in food production is mostly used in 83 

image analysis (Arslan, Memis, Sonmez, & Batur, 2022; Loddo, Di Ruberto, Armano, & 84 

Manconi, 2022; McAllister, Zheng, Bond, & Moorhead, 2018).  85 

Traditional cheese classification systems are usually based on milk type, milk 86 

treatment, coagulation methods, textural properties, and/or specific ripening patterns, all in 87 

combination with compositional data (Almena-Aliste & Mietton, 2014). To the best of our 88 

knowledge, a supervised ML approach to classifying different cheese varieties on the basis 89 

of compositional data has not yet been published. However, it should not be disregarded that 90 

chemometric classification studies on cheese have already been performed, although with a 91 

different focus. Barile, Coïsson, Arlorio, and Rinaldi (2006) applied a neural network to 92 

predict Ossolano cheese production origin in order to guarantee the authenticity of this PDO 93 

cheese. Similarly, Brazilian artisanal cheeses were analysed for their mineral content and 94 

divided into production areas (de Andrade et al., 2022). The authors were able to classify the 95 

analysed cheeses with supervised ML methods (Random Forest (RF) and Support Vector 96 

Machines), reaching accuracy and kappa scores of > 0.8. Di Donato et al. (2021) also used 97 

supervised ML methods to discriminate between Italian PDO Pecorino cheeses by their 98 
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volatile fractions. They were able to reach an accuracy score for correct classification of 99 

0.875 with linear and partial least squares discriminant analyses. 100 

Finally, in the 1980s, Aishima and Nakai (1987) applied stepwise discriminant 101 

analysis to gas chromatograph (GC) profiles to classify cheese varieties (Cheddar, Gouda, 102 

Edam, Swiss, and Parmesan). Discriminating between Gouda and Edam revealed itself to be 103 

the most difficult. In cheeses from Switzerland, free volatile carboxylic acids (FVCAs) C1–C6 104 

are often determined for quality assessment reasons, as they were for all the studied cheese 105 

varieties listed in table 1. FVCAs are always formed during cheese ripening as metabolites 106 

from the fermentation of pentoses, hexoses, and lactate by starter, non-starter, or secondary 107 

cultures (C1–C4), from the hydrolysis of milk fat (C4, C6), or from amino acid catabolism (iso-108 

C4–iso-C6) (Badertscher et al., 2023). Most of these FVCAs – except for C1 – may also be 109 

produced by lactococci, lactobacilli, and/or surface microbiota from amino acids after 110 

carbohydrate starvation (Ganesan, Seefeldt, & Weimer, 2004; Ganesan & Weimer, 2017). 111 

For simplicity’s sake, the FVCAs will be divided into the three groups described above. 112 

FVCAs probably contribute to the typical flavour of all known cheese varieties (McSweeney 113 

et al., 2017).  114 

As can be seen in table 1, most of these data were collected and filed in the first 20 115 

years of the 21st century. In the present work, these data shall be brought together with the 116 

aim of answering the following questions, irrespective of the maturity stage: 117 

- Can cheese varieties be classified by their FVCA profiles using supervised ML 118 

methods? 119 

- Which features from the FVCA profile are important for classification? Could they be 120 

used to differentiate one variety from another?  121 

 122 

2. Materials and Methods 123 

2.1 Information on the cheese varieties (the target) 124 

The targets are typical cheese varieties from Switzerland that are more or less well known 125 

depending on the region. They are listed in table 1 with corresponding references and 126 

Jo
urn

al 
Pre-

pro
of



websites where more information on the individual varieties can be found. With the exception 127 

of Appenzeller®, all of the cheeses are registered as AOP (PDO and DOP in English and 128 

Italian, respectively) with the Swiss Federal Office for Agriculture (FOAG, 2022). They are all 129 

produced from raw milk and have different maturity stages, depending on the variety and on 130 

the preferred ripeness at the time of consumption. The youngest cheeses are the semi-hard 131 

varieties Appenzeller®, Formaggio d’Alpe Tincinese DOP, and Raclette du Valais AOP, aged 132 

3–6 months, and the oldest cheeses are found among the extra-hard cheese varieties Berner 133 

Hobelkäse AOP, L’Etivaz à rebibes AOP, and Sbrinz AOP, aged 25–35 months. All three 134 

varieties are often eaten as shaved cheese. Le Gruyère AOP, Emmentaler AOP, and Berner 135 

Alpkäse AOP are ripened for 3–13 months. All cheese samples were judged by the 136 

respective consortia to be of good quality. 137 

For simplicity’s sake, the term AOP will be omitted throughout the following text. 138 

 139 

2.2 Data preparation: From the raw data to the working data  140 

As described above, several cheese varieties from Switzerland were characterised by means 141 

of various analyses, such as their GC profiles (C1–C6). The FVCAs were determined 142 

according to the method described by (Fröhlich-Wyder et al., 2013). ‘20 g of 143 

cheese was first distilled in an acidic medium with steam and the distillate titrated with NaOH 144 

to determine the total acidity. Subsequently, 1 mL of the over-titrated solution was esterified 145 

and the relative concentrations of each FVCA were determined by headspace injection 146 

on a GC-FID. Together with the total acidity, the individual absolute contents could then be 147 

calculated’ (Badertscher, Blaser, & Noth, 2023). Information on sampling can be found in the 148 

references listed in table 1. In most cases, a piece of 2–3 kg of cheese had been provided by 149 

the consortia. At least 0.5 cm of the rind of the smear-ripened cheeses had been removed 150 

and at least 3 cm of the hoop side. The remaining cheese had been grated and mixed before 151 

analysis. 152 

The raw data extracted from the database included 241 observations (cheese 153 

samples), eight (FVCA) features, and one categorical variable, the target (cheese variety). 154 
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The raw dataset had no missing data, which is important for classification. Furthermore, the 155 

sum of FVCAs was not included in the analysis since it strongly correlated with acetic (C2, r 156 

= .985) and propionic (C3, r = .990) acids. However, looking at the individual cheese groups, 157 

C2 correlated strongly with total FVCAs in most cheese varieties (except for Berner 158 

Hobelkäse and L’Etivaz à ribibes) but not C3, which only highly correlated with total FVCAs 159 

in Emmentaler and L’Etivaz (results not shown). 160 

Cheese is a natural product; therefore, variations must be expected in FVCA content. 161 

For this reason, a purely mathematical definition of outliers, such as the 1.5 × IQR rule, is not 162 

useful and would lead to the elimination of too many observations. It was thus decided to 163 

keep all samples in the dataset. 164 

The final dataset, the working file, consists of 241 observations, eight features, and 165 

the target cheese variety.  166 

 167 

2.2 The modelling process  168 

Figure 1 shows the most important steps for classification with ML methods. Since 169 

classification is a supervised learning process (i.e., the target variables are known), the 170 

algorithms must be provided with a dataset to train a model. Training was conducted with 171 

70% of the data (168 randomly selected samples), which were additionally split into 10 172 

equally sized subsets for cross-validation. Using the trained model, predictions were then 173 

generated with the remaining test data (the remaining 30%, i.e. 73 samples). A comparison 174 

of the predictions with the true values enables a quality assessment of the model by 175 

calculating the accuracy scores.  176 

The modelling process was carried out with the open-source low-code machine 177 

learning library PyCaret (Ali, 2020). It supports numerous ML algorithms; 14 classifiers were 178 

tested in this work, which are listed in table 2, including their references. PyCaret applies the 179 

above-described train-eval-testing validation technique. The output of the model comparison 180 

is a table with the average scores of all models across the folds (10) and with the required 181 

times. The classification metrics in the output are accuracy, area under the curve (AUC), 182 
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recall, precision, F1, Cohen’s kappa, and the Matthews correlation coefficient (MCC). These 183 

metrics represent always specified count fractions; this is why they are often indicated in %. 184 

The library also helps in pre-processing (e.g., it standardises and deals with imbalanced 185 

data, tunes the hyperparameters, and may even take over the feature engineering task). 186 

Since there were only eight features which had been investigated, the feature selection task 187 

was omitted. The following parameters were chosen in the setup function: remove_outliers = 188 

False, transformation = True, normalize = True, normalize_method = ‘robust’. Fine-tuning the 189 

best model did not improve the results. 190 

 191 

2.3 Model interpretation  192 

In order to understand the significance of each feature for the classification of the cheese 193 

varieties, the feature importance of the tree-based models was extracted, and the according 194 

SHAP values (SHapley Additive exPlanations) were calculated with the SHAP module in 195 

Python (Lundberg, 2018). The latter assigns each feature of each cheese variety an 196 

importance value (Lundberg & Lee, 2017); it uses the classic Shapley values from game 197 

theory. The SHAP values help to interpret the classifications and, therefore, could be a 198 

valuable tool to differentiate cheese varieties. 199 

 200 

3. Results and Discussion 201 

3.1 Data exploration  202 

Figure 2 shows the distribution of the observations (samples) for each cheese variety. As can 203 

be seen, there are several outliers present across nearly all the cheese varieties and FVCAs. 204 

The outliers are found in the upper part of the boxplots, indicating a right- or positive-skewed 205 

distribution. In fact, skewness calculated for the distributions shows that the majority of the 206 

values are positive (results not shown). The negative values reached a negative maximum of 207 

-0.283, indicating a fairly normal distribution; this was the case for C1, C2, C6, and iso-C4. 208 

The maximal positive values (> 4.5) were found for iso-C4 and iso-C5 in Sbrinz, because 209 
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only one and seven observations, respectively, contained these FVCAs; they were missing in 210 

all the other samples. This explains the strongly right-skewed distribution. A similar 211 

observation was conducted for iso-C6 in Le Gruyère. Also, higher values were calculated for 212 

C3, with the exception of the varieties L’Etivaz à rebibes and Emmentaler. The only relevant 213 

source of C3 in cheese is Propionibacterium freudenreichii. These bacteria naturally occur in 214 

raw milk as wild strains (Turgay et al., 2011), can grow during maturation, and produce a 215 

varying amount of C3 in a strain-dependent manner but mainly contingent upon their ability 216 

to grow to higher concentrations. In the case of Emmentaler, the only Swiss-type cheese in 217 

this study, P. freudenreichii is deliberately added as a culture during production in order to 218 

obtain the characteristic eyes and a relevant amount of C3 (Fröhlich-Wyder et al., 2022). Due 219 

to this fact, the final concentrations of P. freudenreichii in mature Emmentaler are within the 220 

same order of magnitude for all samples, allowing C3 levels to occur at a near-normal 221 

distribution. L’Etivaz à rebibes is a long-ripened and high-cooked cheese with a high salt 222 

content; this combination inhibits the growth of propionic acid bacteria. Therefore, the right-223 

skewed distribution of C3 in the other cheese varieties is due to naturally occurring outliers. 224 

The remaining FVCAs reached values of 2–3, also indicating right-skewed distributions. This 225 

is easily recognisable from the medians being often situated in the lower part of the boxes 226 

(figure 2). Right-skewed distributions will always be encountered in the case of cheese 227 

production; this is why it was decided to include all outliers in the modelling. 228 

 229 

3.2 Classification of cheese varieties 230 

Table 3 presents the classification results of the training dataset (mean values of 10 runs). 231 

Tree-based classifiers are the most common among the best models, namely the Extra 232 

Trees classifier (ET) and Random Forest classifier (RF), two very similar ensemble classifiers 233 

(Ceballos, 2019). In the training phase, the two algorithms were able to classify over 90% of 234 

the holdout cheese samples correctly. The recall (sensitivity) of the samples was ~4% higher 235 

with ET and the precision (reliability) ~2%. Similarly, the F1-score – the harmonic mean of 236 

precision and recall – was found to be over 90% for ET. This score is a better accuracy score 237 
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for imbalanced data than the classical accuracy score, which describes correctly predicted 238 

samples. In the present work, as can be seen in table 1, the data are fairly imbalanced. 239 

However, the two scores are similar. The kappa metric describes the agreement between the 240 

predicted and true values for cross-validation during training. A better metric for imbalanced 241 

data and multiclass issues is the MCC, which calculates the correlation coefficient between 242 

the predicted and the true classes. However, all these metrics confirm that ET performed 243 

best, although RF, LR, and also the Light Gradient Boosting Machine (LightGBM) – a 244 

boosting framework using tree-based algorithms – are very close (table 3). 245 

  As table 4 shows, > 90% of the test data – corresponding to >65 of the 73 test 246 

samples – were predicted correctly with the above trained ET and RF algorithms, versus 247 

85% with LightGBM and only 80% with LR. All the other metrics fell within a similar range, 248 

with kappa and MCC being somewhat lower than the classical accuracy scores. LR yielded 249 

the poorest results for all metrics except recall, which was higher than recall of LightGBM. 250 

This is not surprising, even though LR was judged second best during training: the median of 251 

the accuracy score showed a large divergence from the mean value, indicating the instability 252 

of the algorithm (table 3). 253 

Table 5 compares the true results with the predicted results for the test data using the 254 

trained models. They include misclassifications, which had to be expected because of the 255 

similarity of the cheese varieties. As an example, L’Etivaz à rebibes and Berner Hobelkäse 256 

are long-ripened variants of L’Etivaz and Berner Alpkäse, respectively (Goy & Wechsler, 257 

2015; Jakob, Badertscher, & Bütikofer, 2007). Other misclassifications – especially those 258 

concerning Berner Alpkäse – probably have to do with the high variability of the product 259 

(Jakob et al., 2007). Interestingly, Berner Alpkäse is often misclassified as Le Gruyère and 260 

vice versa; both are smear-ripened hard cheese varieties that use back-slopping cultures. 261 

The fewest misclassifications were observed for Emmentaler, Raclette du Valais, and 262 

Formaggio d’Alpe Ticinese. 263 
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 264 

3.3 Feature importance 265 

In tree-based models, the features used as a decision node and contributing to the decrease 266 

in splitting impurity are ranked. This ranking can be used to assess the relative importance of 267 

these features (Pedregosa et al., 2011), which, in turn, helps in analysing and understanding 268 

which features are relevant for the correct classification of cheese varieties. Therefore, those 269 

yielded by the top three tree-based classifiers, ET, RF, and LightGBM, were compared (table 270 

6). All three models agree on the most (or second most) and least important features: C1 271 

was judged to be the most (or second most) important and preferably used as a decision 272 

node, while iso-C6 was the least important. C1 is a product originating from the fermentation 273 

of citrate by facultatively heterofermentative lactobacilli (FHL), either from the raw milk or an 274 

adjunct culture, depending on the cheese variety. C1 is already formed in small quantities 275 

during lactic acid fermentation by Streptococcus thermophilus, which promotes the 276 

multiplication of lactobacilli (Horiuchi & Sasaki, 2012; Yamamoto, Watanabe, Ichimura, 277 

Ishida, & Kimura, 2021). Appenzeller®, Emmentaler, and Formaggio d’Alpe Ticinese are 278 

produced with an adjunct culture of FHL; Raclette du Valais has a high prevalence of FHL 279 

originating from the raw milk, as shown by microbiome analysis (Wechsler et al., 2021). This 280 

is why they contain higher levels of C1 compared to the other cheese varieties (see 281 

references in table 1). On the other hand, the extra-hard cheeses Sbrinz, Berner Hobelkäse, 282 

and L’Etivaz à rebibes, with high cooking temperatures of > 50 °C, contain very low amounts 283 

of C1 as a consequence of the inhibition of FHL from the raw milk. 284 

The FVCAs C3, iso-C4, and C6 were among the next most important features; 285 

however, the order of their importance was different for each model. C3 is a very specific 286 

FVCA originating mainly from propionic acid fermentation, as outlined in section 3.1. 287 

Emmentaler contains very high amounts of C3 (> 60 mmol kg-1); all the other cheese 288 

varieties contain much lower amounts (figures 2 and 3). The branched-chain fatty acid iso-C4 289 

is a product of the catabolism of the branched-chain amino acid valine. Aspartic acid, 290 

glutamic acid, methionine, and serine can also be precursors of iso-C4, depending on the 291 
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microbiota present in cheese (Ganesan & Weimer, 2017). The Appenzeller® and both Etivaz 292 

varieties contain the most branched-chain fatty acids. They seem to be a distinctive feature 293 

of the Etivaz cheese varieties, as figure 3 shows. In contrast, C6 is a typical product of 294 

lipolysis and is primarily found in long-ripened cheeses, such as Berner Hobelkäse and 295 

L’Etivaz à rebibes (figures 2 and 3). LightGBM judged C6 to be the most important feature for 296 

classification. C2 and C4 are of rather low importance; the reason for the low importance of 297 

C4 lies in its high variance, whereas the high prevalence of C2 in all the cheese varieties 298 

renders this FVCA less important. The high variance of C4 is due to its two likeliest origins, 299 

namely clostridia and lipolysis. Clostridia are considered highly undesirable contaminants but 300 

may still be present in very low concentrations in cheeses that form low and changing 301 

amounts of C4, whereas lipolysis is dependent on milk quality and is influenced, among 302 

others, by feeding and animal breed (Arias-Roth et al., 2022). C2 is formed in many different 303 

processes and therefore reaches high concentrations in all the cheeses. In Emmentaler 304 

cheeses, it may originate from a specific pathway – propionic acid fermentation – where C2 305 

is produced in parallel to C3 (Fröhlich-Wyder et al., 2022). Finally, the role of iso-C5 seems 306 

to be ambiguous, as is the role of iso-C6, an FVCA present in very few cheese varieties if at 307 

all, and therefore unimportant for classification.  308 

 309 

3.4 SHAP values 310 

In order to understand the contribution of each feature to the prediction of every cheese 311 

variety, the SHAP values were calculated based on the top three tree-based models (i.e., ET, 312 

RF, and LightGBM). The results for the relative mean SHAP values are shown in figure 4. 313 

The values from the ET and RF models are similar, which is not surprising since they are 314 

very close ensemble methods. LightGBM is a boosting method that seems to increase the 315 

values of the most important features (e.g., iso-C4 in both Etivaz varieties and Sbrinz). The 316 

role of the features will be discussed separately for each variety.  317 

Appenzeller® is a semi-hard, smear-ripened cheese made with an adjunct culture of 318 

FHL. This is why C1 is an important characterising feature of this cheese. Furthermore, the 319 
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iso-FVCAs seem to be important features, indicating the impact of smear ripening on 320 

proteolysis, where the microbiota catabolise branched-chain amino acids into the 321 

corresponding FVCA (Williams, Beattie, & Banks, 2004). LightGBM increases the SHAP 322 

value of C1, confirming its importance in Appenzeller®. 323 

Berner Alpkäse and Berner Hobelkäse are both hard, smear-ripened cheeses 324 

produced in the Bernese Alps. For the correct classification of Berner Alpkäse, the presence 325 

of low amounts of both C3 and iso-FVCAs plays a major role in a correct classification. 326 

Berner Hobelkäse is a long- and dry-ripened Berner Alpkäse which can be eaten as shaved 327 

cheese. An important feature for Berner Hobelkäse is the contribution of lipolysis to the 328 

FVCAs as a result of the long ripening time (figures 3 and 4).  329 

As could be expected, the high content of C2 and C3 is typical of Emmentaler. It is 330 

worth noting that iso-C4 and iso-C5 accounted for approximately 25% of the SHAP value, 331 

even though these acids had not been determined (figures 2 and 3). It can be concluded that 332 

the absence of these acids contributes to the correct classification of Emmentaler. The 333 

cheese variety is dry ripened; thus, no surface microbiota can influence the catabolism of 334 

branched-chain amino acids. 335 

Similar to the Berner Alpkäse and Berner Hobelkäse, the extra-hard L’Etivaz à 336 

rebibes is a long-ripened L’Etivaz (hard cheese). As already observed for Berner Hobelkäse, 337 

the contribution of lipolysis to the FVCAs in L’Etivaz à rebibes is of importance, but so is the 338 

presence of iso-C4. Compared to the other cheese varieties, the Etivaz cheeses show high 339 

proportions of iso-FVCAs, which seem to be important for classification: they account for up 340 

to 70% of the SHAP value of L’Etivaz. In contrast to Berner Alpkäse and Berner Hobelkäse, 341 

the smear-ripening is performed at significantly higher relative humidity in common central 342 

ripening rooms (FOAG, 2022), which explains the stronger impact of the smear on these 343 

acids. Furthermore, a certain amount of C3, probably originating from propionic acid 344 

fermentation, also plays an important role in classification. Although propionic acid 345 

fermentation is primarily desirable in Swiss-type cheeses, such as Emmentaler, C3 is found 346 

to be typical in L’Etivaz. This is not surprising since it is a variety produced from raw milk, 347 
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which often contains Propionibacteria to some degree. Surprisingly, C3 is not abundant in 348 

Berner Alpkäse, which seems to be characteristic of this variety (figure 4).  349 

Formaggio d’Alpe Ticinese is a semi-hard cheese with a natural rind with ubiquitous 350 

moulds. The formation of C1 by FHL and the absence of significant quantities of the iso-351 

FVCAs as a result of the absence of smear-ripening was found to be a typical combination 352 

for this cheese variety (figures 3 and 4). 353 

The hard cheese variety Le Gruyère, also a smear-ripened cheese, has a similar 354 

pattern to Berner Alpkäse. In fact, the models misclassified these two cheese varieties 355 

repeatedly (table 5). Interestingly, smearing, much more prevalent in Le Gruyère than in 356 

Berner Alpkäse, did not have a strong enough effect on the FVCA pattern to guarantee 357 

correct classification. These are the only varieties in this study which are produced with back-358 

slopping cultures. 359 

Raclette du Valais is a smear-ripened semi-hard cheese. Besides C1 and, to a lesser 360 

degree, iso-FVCAs, C6 was shown to have the largest SHAP value for this variety. As is 361 

evident in figure 3, it is the absence of C6, and therefore of lipolysis, which seems to be 362 

unique for Raclette du Valais. 363 

Finally, the extra-hard, dry-ripened cheese Sbrinz is differentiated from other cheese 364 

varieties by a strong contribution of iso-C4 to a correct classification: its SHAP value was the 365 

highest. Similar to Emmentaler, Sbrinz is primarily characterised by the absence of iso-366 

FVCAs but also by low amounts of C1. 367 

 368 

4. Conclusion 369 

In the present work, 241 samples of 10 different cheese varieties from Switzerland were 370 

classified with different ML algorithms on the basis of their FVCA profiles. It was possible to 371 

classify 90% of the samples correctly with two ensemble algorithms, ET and RF. The third-372 

best algorithm, LightGBM, was able to classify 84% of the test data correctly. The fewest 373 

misclassifications were observed for Emmentaler, Raclette du Valais, and Formaggio d’Alpe 374 

Ticinese, whereas most misclassifications occurred between Le Gruyère and Berner 375 
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Alpkäse. The analysis of the feature importance attributes revealed that C1 was the most 376 

important feature, followed by C3, C6, and iso-C4. In order to understand the impact of each 377 

feature on the classification of the cheese varieties, the SHAP value was calculated for the 378 

top three tree-based models. The interpretation of the SHAP value is a first step towards the 379 

differentiation of the cheese varieties. By comparing the relative amount of individual FVCAs 380 

with the relative SHAP value, a specific pattern can be recognised for each cheese variety 381 

(Figure 5). Thus, it was possible to identify key FVCAs that could be applied as differentiating 382 

features as follows: 383 

- Appenzeller®: the detection of C1 and of the iso-FVCAs; 384 

- Berner Alpkäse: the detection of only low amounts of C3 and of the iso-FVCA; 385 

- Berner Hobelkäse: the detection of C6 (and C4) and low proportions of C1; 386 

- Emmentaler: the detection of high amounts of C2 and C3 and the absence of iso-387 

FVCAs; 388 

- L’Etivaz: the detection of C3 and iso-FVCAs; 389 

- L’Etivaz à rebibes: the detection of C6 (and C4) and iso-FVCAs; 390 

- Formaggio d’Alpe Ticinese: the detection of C1 and the absence of iso-FVCAs; 391 

- Le Gruyère: the detection of C1, C3, and small amounts of iso-FVCA; 392 

- Raclette du Valais: the detection of C1 and iso-FVCAs, as well as the absence of 393 

C6; and 394 

- Sbrinz: the detection of low amounts of C1 and the absence of iso-FVCAs. 395 

These unique feature combinations are always the result of specific characteristics of 396 

the cheese varieties: the detection of C1 is linked to the activity of citrate-metabolising lactic 397 

acid bacteria; the detection of iso-C4, iso-C5, and iso-C6 can be linked to the proteolytic 398 

activity of smear microbiota; and the detection of C6 is the result of lipolysis during ripening. 399 

Furthermore, C3 is a characteristic metabolite of propionic acid fermentation. 400 

In conclusion, it was possible to classify 90% of the test data correctly by means of 401 

ML algorithms based on their FVCA profile. The application of the PyCaret library proved to 402 

be a simple, efficient, and promising tool for employment in research. The evaluation of the 403 
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feature importance and especially of the calculated SHAP values proved to be highly 404 

informative. For similar ML applications, we recommend always evaluating the SHAP values, 405 

as they contributed substantially to the differentiation of the investigated cheese varieties. 406 

 407 
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Figure 1: Representation of a typical machine learning process   

 
 

Figure 2:  Boxplots of FVCAs grouped by cheese variety. The number of observations can be 

found in table 1. The y-scale is adapted to the FVCA range of each cheese variety. 

(FVCA, free volatile carboxylic acids; C1, formic acid; C2, acetic acid; C3, 

propionic acid; C4, butyric acid; iso-C4; isobutyric acid; iso-C5, isovaleric acid; iso-

C6, isocaproic acid) 

 

Figure 3:  Stacked bar chart of the mean molar FVCA fraction (mol%) grouped by cheese 

variety. The number of observations can be found in table 1. Colours represent the 

main origins; blue: fermentation; yellow: lipolysis; red; proteolysis. (FVCA, free 

volatile carboxylic acids; C1, formic acid; C2, acetic acid; C3, propionic acid; C4, 

butyric acid; iso-C4; isobutyric acid; iso-C5, isovaleric acid; iso-C6, isocaproic acid) 

 

Figure 4:  Relative mean SHAP values from the top three tree-based models for each FVCA 

grouped by cheese variety. The number of observations can be found in table 1. 

(SHAP, SHapley Additive exPlanations; FVCA, free volatile carboxylic acids; C1, 

formic acid; C2, acetic acid; C3, propionic acid; C4, butyric acid; iso-C4; isobutyric 

acid; iso-C5, isovaleric acid; iso-C6, isocaproic acid) 

 

Figure 5:  Mean molar FVCA fraction represented by the upper edge (  mol%) and 

relative mean SHAP values from the top two ensemble methods represented by 

the lower edge (  %), grouped by cheese variety. The number of observations 

can be found in table 1 and colour codes in figure 4. Example for Emmentaler: 

More than 90 mol% of the FVCAs originate from fermentations, which contribute 

approximately 70% to a correct classification (blue). Intensive fermentation, but 

weak proteolysis (red) are typical for Emmentaler. 
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Table 1: Cheese varieties from Switzerland that have been analytically characterised (N = 

number of samples/observations) 

Cheese variety N Link to consortia  References 

Appenzeller® a 29 www.appenzeller.ch  Fröhlich-Wyder, Beutler, 
Bütikofer, Lavanchy, & Winkler 
(2003) 

Berner Alpkäse AOP 10 www.casalp.ch  Jakob, Badertscher, & 

Bütikofer (2007) 

Berner Alpkäse AOP a 26 www.casalp.ch Jakob & Piccinali (2010) 

Berner Hobelkäse AOP 10 www.casalp.ch Jakob et al. (2007) 

Emmentaler AOP a, b 58 www.emmentaler.ch  Wyder, Bosset, Casey, Isolini, 

& Sollberger (2001) 

L’Etivaz AOP 10 www.etivaz-aop.ch   Goy & Wechsler (2015) 

L’Etivaz à rebibes AOP 7 www.etivaz-aop.ch  Goy & Wechsler (2015) 

Formaggio d’Alpe Ticinese DOP a 16 www.formaggio-alpe-ticino.ch Haldemann (2010) 

Le Gruyère AOP a 30 www.gruyere.com  Fröhlich-Wyder, Goy, Häni, 

Lavanchy, & Bosset (2003); 

Lavanchy, Bütikofer, Häni, 

Goy, & Fröhlich-Wyder (2002) 

Le Gruyère AOP a 18 www.gruyere.com Goy, Piccinali, Wechsler, & 

Jakob (2011) 

Raclette du Valais AOP 21 www.raclette-du-valais.ch  Wechsler et al. (2021) 

Sbrinz AOP c 28 www.sbrinz.ch  Eugster, Berthoud, & Amrein 

(2011) 
a Different maturity stages; b At that time, Emmentaler did not hold an AOP yet. Two different cultures of P. 

freudenreichii were used; c Cheeses were analysed within the framework of a trial in Sbrinz cheese factories. 

Different NSLAB cultures were tested. AOP, appellation d’origine protégée; DOP, denominazione di origine 

protetta 
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Table 2: Classifiers used in the present study (PyCaret)  

ID name reference 

LR logistic regression sklearn.linear_model._logistic.LogisticRegression 

KNN k-nearest neighbours classifier sklearn.neighbors._classification.KNeighborsClassifier 

NB naive Bayes sklearn.naive_bayes.GaussianNB 

DT decision tree classifier sklearn.tree._classes.DecisionTreeClassifier 

SVM SVM – linear kernel sklearn.linear_model._stochastic_gradient.SGDClassifier 

Ridge Ridge classifier sklearn.linear_model._ridge.RidgeClassifier 

RF Random Forest classifier sklearn.ensemble._forest.RandomForestClassifier 

QDA quadratic discriminant analysis sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis 

ADA AdaBoost classifier sklearn.ensemble._weight_boosting.AdaBoostClassifier 

GBC gradient boosting classifier sklearn.ensemble._gb.GradientBoostingClassifier 

LDA linear discriminant analysis sklearn.discriminant_analysis.LinearDiscriminantAnalysis 

ET Extra Trees classifier sklearn.ensemble._forest.ExtraTreesClassifier 

LightGBM Light Gradient Boosting Machine lightgbm.sklearn.LGBMClassifier 

Dummy dummy classifier sklearn.dummy.DummyClassifier 
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Table 3. Performance results of a model training session in PyCaret (mean of 10 runs with 

70% of the data) 

Model Accuracy AUC Recall Prec. F1 Kappa MCC TT (s) 

ET 0.9346 a) 0.2000  0.9279  0.9352  0.9259  0.9241  0.9279  0.3180 

LR 0.9107 b) 0.1992 0.9261 0.9350 0.9038 0.8967 0.9036 0.0310 

RF 0.9103 c) 0.2000 0.8886 0.9104 0.9012 0.8960 0.9003 0.3110 

LightGBM 0.9040 d) 0.1992 0.8700 0.9088 0.8906 0.8891 0.8960 0.0720 

KNN 0.8809 0.1953 0.8750 0.9057 0.8729 0.8625 0.8695 0.0920 

LDA 0.8743 0.1992 0.8751 0.9003 0.8660 0.8550 0.8625 0.0080 

NB 0.8507 0.1949 0.8386 0.8571 0.8306 0.8269 0.8382 0.0110 

GBC 0.8504 0.2000 0.8421 0.8502 0.8343 0.8270 0.8362 0.4370 

SVM 0.8096 0.0000 0.7956 0.8294 0.7903 0.7792 0.7954 0.0500 

DT 0.7974 0.1766 0.7772 0.7993 0.7775 0.7670 0.7782 0.0100 

Ridge 0.7081 0.0000 0.6210 0.6191 0.6436 0.6585 0.6742 0.0090 

ADA 0.3743 0.1374 0.2924 0.2324 0.2611 0.2505 0.3600 0.0540 

Dummy 0.1787 0.1000 0.1131 0.0319 0.0542 0.0000 0.0000 0.0090 

QDA 0.1493 0.0000 0.1131 0.0233 0.0401 0.0000 0.0000 0.0120 
a) SD: 0.0488, median: 0.9412; b) SD: 0.0477, median: 0.8824; c) SD: 0.0559, median: 0.9100; d) SD: 0.0494, median: 0.8824 

 

 
 

 

 

 

Table 4: Performance results of the top four models in PyCaret (with remaining 30% of the 

data, the test data) 

Model Accuracy AUC Recall Prec. F1 Kappa MCC 

ET 0.9315 0.9874 0.9374 0.9356 0.9314 0.9204 0.9208 

LR 0.8082 0.9764 0.8622 0.8455 0.8139 0.7790 0.7843 

RF 0.9178 0.9945 0.9318 0.9260 0.9187 0.9046 0.9056 

LightGBM 0.8493 0.9867 0.7658 0.8542 0.8442 0.8241 0.8247 
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Table 5: Cross table of the true values (columns) and the predicted values (rows) from the 

top three tree-based models obtained from the modelling process in PyCaret (ET, RF, 

LightGBM). Example for Le Gruyère: With ET, 16 out of the 17 samples in the test set had 

been classified correctly and one sample had been misclassified as Berner Alpkäse. 
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Appenzeller 4, 4, 4          

Berner Alpkäse  9, 9, 8      1, 1, 2  1, 1, 1 

Berner Hobelkäse  1, 1, 2 2, 2, 1        

Emmentaler    10, 10, 10       

L’Etivaz     3, 3, 1   0, 0, 1   

L’Etivaz à rebibes   0, 0, 1   2, 2, 1     

Formaggio d’Alpe 
Ticinese       6, 6, 6    

Le Gruyère 0, 0, 1 2, 3, 1      16, 15, 16   

Raclette du Valais         8, 8, 8  

Sbrinz          8, 8, 7 

 

 

 

 

 

Table 6: Ranking of the features according to the attribute ‘feature importance’ of the three 

top tree-based models (see table 3), in descending order of importance. ‘Feature importance’ 

is a return parameter of all tree-based models. 

ET RF LightGBM 

C1 C1 C6 

iso-C4 C3 C1 

C3 iso-C4 C3 

C6 iso-C5 iso-C4 

iso-C5 C6 C4 

C2 C2 C2 

C4 C4 iso-C5 

iso-C6 iso-C6 iso-C6 
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Highlights 1 

• Free volatile carboxylic acids are valuable for differentiating cheeses from 2 

Switzerland. 3 

• Ensemble algorithms can classify 90% of cheese samples correctly. 4 

• The most important feature is C1, followed by C3, C6, and iso-C4. 5 

• The application of the PyCaret library is a simple, efficient, and promising tool. 6 

• The evaluation of SHAP values is a means of cheese differentiation. 7 
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