Characterization of Standard Milk Protein Samples for the Evaluation of *in-vitro* Digestion Models

<u>Cornelia Bär</u>, Katrin Kopf-Bolanz, Flurina Schwander, Guy Vergères, Lotti Egger, Reto Portmann Agroscope Liebefeld-Posieux Research Station ALP-Haras, Schwarzenburgstrasse 161, 3003 Bern, Switzerland, www.agroscope.ch

Introduction

In-vitro digestion models are useful to address questions regarding physiological effects, allergic potential and food safety. The human digestive system comprises a multitude of intricate processes break down nutrients into to physiologically active compounds. Due to their complexity, it is very difficult to simulate them *in-vitro*. In recent years various digestion protocols have been developed by different laboratories. In order to harmonize these protocols, the composition of the starting material was determined.

Methods

As reference samples dried and fat free milk protein powders were chosen due to their stability, complexity and easy handling properties. For this purpose a batch of skim milk (NZ-SMP), sodium caseinate (NZ-caseinate) and whey protein powder (NZ-WP; Fig. 1.) were kindly provided by Brent Murray.

Fig 1.: Sodium caseinate (A, NZ-caseinate), Skim milk powder (B, NZ-SMP) and whey protein powder (C, NZ-WP) from New

Results

Content in major milk proteins: As expected NZ-WP consists to 96.20% of Whey protein, of which 59.60% is β -Lactoglobulin and 34.97% α -Lactalbumin (Fig. 3.B). NZ-Caseinat consists to 94.70% of casein, but casein is also prominent in NZ-SMP (84.23%; Fig. 2 und 3.B).

Zealand were used as reference samples.

In order to define the composition, the milk protein powders were dissolved in H₂O and characterized by various analytical methods. Total and non-protein nitrogen, fat, calcium, lactose, as well as protein patterns were analyzed by Kjeldahl, Roese-Gottlieb, Schmid-Bondzynski, flame-AAS, HPLC, SDS-PAGE and Protein 80 LabChip kit (Agilent), respectively.

sample	total nitrogen [g/kg]	non-protein nitrogen [g/kg]	total fat [g/kg]	calcium	lactose [mmol/kg]
				[mg/kg]	
NZ-SMP	64.90	3.33	7.5	13258.12	4888.67
NZ-SMP	66.37	3.42	10.39	13437.87	5116.00
NZ-SMP	64.70	3.32	8.47	13401.41	4937.73
mean NZ-SMP	65.33	3.36	8.79	13365.80	4980.80
NZ-WP	145.11	0.58	9.27	702.62	< LOD
NZ-WP	145.15	0.49	6.06	689.50	< LOD
NZ-WP	145.17	0.50	6.95	710.28	< LOD
mean NZ-WP	145.14	0.52	7.43	700.80	< LOD
NZ-caseinate	143.40	2.07	4.8	713.01	< LOD
NZ-caseinate	143.41	-	5.3	726.73	< LOD
NZ-caseinate	143.41	2.07	5.0	720.00	< LOD

three reference samples: sodium caseinate (A), whey protein powder (B) and skim milk powder (C).

Table 1.: Mean values [g/kg] for the content of total and non-protein nitrogen (Kjeldahl), total fat (Roese-Gottlieb), calcium (flame-AAS), lactose (enzymatic). Limit of Detection (LOD)

Interestingly NZ-SMP comprises almost twice as much calcium as NZ-WP and NZ-caseinate (13365.80 g/kg versus 700.80 g/kg and 720.00 g/kg, Fig 3.B). Lactose was below the detection limit in NZ-Caseinat and NZ-WP (Fig. 3.B).

In future experiments the 20 most abundant proteins will be quantified by selected reaction monitoring

mass spectrometry ^[1].

Fig 3. A: Insolubility Index (IDF 129A) [%] for NZ-SMP, NZ-caseinate and NZ-WP. **B:** Protein composition [%] of NZ-SMP, NZ-caseinate and NZ-WP, identified by Protein 50 LabChip kit (Agilent).

Application

ALP | 2013

By using the here presented data on the provided reference samples the fate of the principle ingredients can be followed during *in-vitro* digestion. These reference samples can also be used to control repeatability in future experiments.

- [1] Mathis D., Schwander F., Kopf-Bolanz K., Egger C., Portmann R., Absolute Quantification of 20 Major Proteins in Dairy Products by LC-MS/MS, 2012
- * Presenting and corresponding author: cornelia.baer@alp.admin.ch

Federal Department of Economic Affairs FDEA Agroscope Liebefeld-Posieux Research Station ALP

Swiss Confederation

ALP is part of the ALP-Haras Unit