

International Dairy Journal 11 (2001) 911-926

INTERNATIONAL DAIRY JOURNAL

www.elsevier.com/locate/idairyj

Comparison of dynamic headspace and simultaneous distillation extraction techniques used for the analysis of the volatile components in three European PDO ewes' milk cheeses

Patricia Larráyoz^a, Margherita Addis^b, Roland Gauch^c, Jacques Olivier Bosset^{c,*}

^a Nutrición y Bromatología, Universidad Pública de Navarra, E-31006 Pamplona, Spain
^b Istituto Zootecnico e Caseario per la Sardegna, Loc. Bonassai I-07040 Olmedo, Italy
^c Federal Dairy Research Station (FAM) Liebefeld, CH-3003 Bern, Switzerland

Received 28 June 2001; accepted 19 September 2001

Abstract

This preliminary study aims to compare two different extraction and concentration methods often used for the gas chromatographic analysis of volatile components in food to determine the advantages and drawbacks of both for future routine investigation of PDO (protected designation origin) ewes' milk cheeses. Roncal, Pecorino Sardo and Fiore Sardo were investigated at different ripening stages. The dynamic headspace technique using a Purge & Trap device (DHS) makes it possible to extract more highly volatile compounds than the simultaneous distillation extraction (SDE) method. Consequently, the latter is more efficient for extracting low-volatile components such as phenols, free fatty acids, lactones and longer-chain aldehydes, ketones, alcohols and esters. These two extraction methods are therefore complementary. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Volatile component; Dynamic headspace technique; Simultaneous distillation extraction; Ewes' milk cheese

1. Introduction

The instrumental characterisation of the volatile fraction is important not only for defining cheese composition, but also for linking it with its typical organoleptic features and original environment, as required for a protected designation origin (PDO). The extraction of volatile compounds from cheese is difficult due to the complexity of the matrix (Urbach, 1993). Various analytical techniques have been proposed (Mariaca & Bosset, 1997; Bosset & Gauch, 1993), each of them having advantages and drawbacks.

Volatile fractions from some ewes' milk cheeses have already been studied (Ortigosa, Torre, & Izco, 2001; Fernández-García, 1996; de Frutos, Sanz, & Martínez-Castro, 1991; Ha & Lindsay, 1991; González de Llano, Ramos, Polo, Sanz, & Martínez-Castro, 1990; Horwood, Lloyd, & Stark, 1981). There have been some attempts to find a relationship between the volatile fraction and the microflora of the cheese as well as to determine the metabolic pathway for the biosynthesis or the biodegradation of some volatile compounds (Ortigosa et al., 2001; Moio, Dekimpe, Etievant, & Addeo, 1993b; Collin, Osman, Decambre, El-Zayat, & Dufour, 1993). However, so far the volatile fractions of Pecorino Sardo and Fiore Sardo (both from Italy) cheeses have not been investigated by dynamic headspace technique using a Purge & Trap device (DHS) or simultaneous distillation extraction (SDE). In the case of Roncal cheese (Spain), the composition of the volatile fraction was recently examined by DHS (Ortigosa et al., 2001) as well as supercritical fluid extraction (SFE) (Larráyoz, Ibáñez, Torre, Ordóñez, & Barcina, 1999).

These types of cheese are made from raw ewes' milk according to the manufacturing process approved by their PDO Regulatory Board (Table 1). Roncal and Pecorino Sardo cheeses are semi-hard-type cheeses; Fiore Sardo is a hard cheese. Some physico-chemical and quality parameters of these varieties have been studied. Composition and evolution of the microflora, proteolysis and lipolysis have also been studied in Roncal cheese (Arizcun, Barcina, & Torre, 1997a, b; Oria Almudia & Sala Trepat, 1992; Millán, Alcalá,

^{*}Corresponding author. Fax: +41-323-8227.

E-mail address: jacques-olivier.bosset@fam.admin.ch (J.O. Bosset).

Table 1		
Characteristics of the ewes'	milk cheeses	studied

Variety	Age of samples (months)	Milk	Type of cheeses	Starter	Rennet	Brine	Typical ripening duration (days)
Roncal	5	Raw	Semi-hard, unsmoked	Addition (optional)	Natural lamb's or commercial	Saturated	120
Pecorino Sardo	1	Raw	Semi-hard, unsmoked	Addition of natural culture	Industrial calf rennet	Saturated	60
Pecorino Sardo	7	Raw	Semi-hard, unsmoked	Addition of natural culture	Industrial calf rennet	Saturated	180
Fiore Sardo	8	Raw	Hard, smoked	No starter	Natural lamb or kid paste rennet	Saturated	180

Sanjuán, Penedo, & Castelo, 1992), in Pecorino Sardo cheese (Scintu, Ledda, Floris, & Sanna, 1995; Ledda, Scintu, Pirisi, & Piredda, 1996) as well as in Fiore Sardo cheese (Ledda, Murgia, & Arrizza, 1978; Botazzi, Arrizza, & Ledda, 1978; Pettinau, Nuvoli, & Podda, 1978; Ledda, Scintu, Pirisi, Sanna, & Mannu, 1994; Piredda et al., 1995; Piredda et al., 1996; Pirisi, Pinna, & Papoff, 1999; Pinna, Pirisi, Piredda, Addis, & Di Salvo, 1999).

The aim of this preliminary study was to compare two analytical techniques, a DHS using a Purge & Trap device (Mariaca & Bosset, 1997) and a SDE, both coupled with gas chromatography (GC) with mass selective and flame ionisation detections (MSD + FID) (Godefroot, Sandra, & Verzele, 1981) to determine semiquantitatively the volatile components (measured as peak height) of three ewes' milk cheeses at different ripening grades (n = 1 sample per cheese type and ripening grade). This comparison of methods has to demonstrate their advantages and drawbacks for future routine investigation of PDO ewes' milk cheeses.

2. Materials and methods

The comparison of the methods applied in the different laboratories participating in this investigation explains the various types of equipments used.

2.1. Samples

Roncal PDO cheese at 5 months of ripening, Pecorino Sardo PDO cheese at 1 and 7 months of ripening and Fiore Sardo PDO cheese at 8 months of ripening were tasted and selected as high-grade material. A representative sample was obtained by pooling two pieces from opposite ends of each cheese block and grating them after discarding 1 cm of rind and smear. The grated sample was stored frozen at -20° C until analysis.

2.2. Dynamic headspace

2.2.1. Reagents and chemicals

Authentic compounds used to confirm mass spectra and retention indices are marked with a star (*) in Tables 2–7. The Milli-Q water[®] was boiled under a continuous nitrogen flow for ≈ 15 min with an electric heating device to strip off all residual volatile trace components.

2.2.2. Sample preparation

Two different procedures were used: a suspension method and a dry method.

2.2.2.1. Suspension method. Shortly before analysis, a representative amount of ≈ 20 g of the sample material was weighed and finely dispersed in 80 mL water with a high-speed homogeniser (Polytron PT 3000 used with a PT-DA 6030–6060 cutting system, Kinematica) running at 5000 rpm for 5 min. Finally, 20 mL of this mixture was carefully introduced into a 25 mL non-fritted sparger of the Purge & Trap extraction system.

2.2.2.2. Dry method. Approximately, 10g of sample material was weighed and introduced directly into a 25 mL non-fritted sparger of the Purge & Trap extraction system.

2.2.3. Extraction of the volatiles

The Purge & Trap system LSC 2000 (Tekmar, Cincinnati, OH, USA) included a 25 mL non-fritted sparger (Schmidlin Co, art. no.14-2333-4SL, CH-6345 Neuheim), a trap (No. 8, containing a mixture of Carbosieve SIII (0.05 g) and Carbopack B 60/80 (0.2 g)) as well as a cryofocusing unit. The moisture control module was not used. The operating conditions were as follows: purge gas, nitrogen; purge flow (vent), 30 mL min⁻¹; prepurge, 1.5 min; water bath, 45°C; purge, 10 min; dry purge, 10 min; cap cool-down, -125° C; desorb preheat to 210°C; desorb, 4 min at 220°C; inject, within 1 min from -125° C to 200°C; bake,

(A) Hydrocarbons and terpenes found using the dynamic headspace technique coupled with GC/MS^{a}

Peak no.	Compounds	LRI ^b	LRI ^b Roncal		Pecorino Sardo				Fiore Sardo		References
		(SPB-1)	5 Months		1 Month		7 Months		8 Months		—
			Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	
7	1,4-Pentadiene	516						1,060,000			
9	1,3-Pentadiene	526					78,000	33,000			
24	Benzene*	655		360		1110					9, 10
54	2,4-Dimethyl-pentane	816							300		
51	2,4-Dimethyl-hexane	800							700		
75	2,2,4,6,6-Pentamethyl-heptane	1032							1500	860	
30	Hept-1-ene*	690	723								
41	Toluene*	761	1970	4030	1420	2750	1460	2370	3100	3900	9
47	Trans1-butyl,2-methyl-cyclopropane	790	1340								
49	Oct-4-ene	797		3920							
50	Oct-3-ene	800	1890	992		661	1100	3760			
52	Octane*	803				1660					9, 10
53	Oct-2-ene*	811		281							10
68	3,7-Dimethyl-1,6-octadiene	945					918	944			
71	3,7-Dimethyl-2-octene	969						772			
78	3-Methyl, 5-propyl nonane	1052							2400	1400	
79	Nonadecane	1065							439		
69	α-pinene	947	455	479					381		
76	Limonene	1038	132	358							9

(B) Hydrocarbons and terpenes found using simultaneous distillation extraction (SDE) coupled to GC-MS^a

Peak no.	Compounds	LRI ^c (INNOWax)	Roncal Pecorino Sardo			Fiore Sardo	References
		(IININO wax)	5 Months	1 Month	7 Months	8 Months	
5	Toluene	1036	536				1, 4, 9
10	Benzene 1,3-dimethyl	1157	378	222	1420		2, 9
25	<i>n</i> -Tetradecane	1421					4, 5, 10
39	2,3-Dimethyl, 2-cyclopenten-1-one	1669				3469	
44	<i>n</i> -Pentadecane	1691	361				5
48	Heptadecane	1773	457				10
53	Benzene, 1,2-dimethoxy	1867				422	
57	2-Hexadecene	1976	583				

^aNote: Values indicated peak heights.

^bLRI=linear retention index using an SPB-1 column.

*MS-Identification confirmed by comparison of Rt's of authentic compound.

(1) Horwood et al. (1981).

(2) Collin et al. (1993).

(3) González de Llano et al. (1990).

(4) Moio et al. (1993b).

(5) de Frutos et al. (1991).

(6) Ha and Lindsay (1991).

(7) Fernández-Garcia (1996).

(8) Moio and Addeo (1998).

(9) Careri, Manini, Spagnoli, Barbieri, and Bolzoni (1994).

(10) Ortigosa, Torre and Izco (2001).

^cLRI=linear retention index using an HP-INNOWax column.

5 min at 260°C ; 6-port valve, 150°C ; line, 150°C ; capillary union heater (transfer line from purge and trap to gas chromatograph), 150°C .

2.2.4. Gas chromatography

Qualitative and semi-quantitative GC analyses were carried out using a Hewlett-Packard (HP) 5890 Series II under the following operating conditions: carrier gas, helium; inlet pressure, 40 kPa; flow, $\approx 1.6 \,\mathrm{mL\,min^{-1}}$ at 45°C; transfer line (from GC to MS), 280°C; interface, direct inlet; temperature programme, 13 min at 45°C, heating rate, 5° C min⁻¹ to 240°C, and 5 min at 240°C; capillary column, SPB1 (Supelco), $30 \text{ m} \times 0.32 \text{ mm}$ i.d., film thickness, 4 µm. Two detectors were mounted in parallel by splitting the flow at the end of the capillary column (split ratio: $\approx 1:1$ at 45°C), i.e. a Hewlett-Packard flame ionisation detector (FID) and a masssensitive detector (MSD model HP 5972), operating in the scan mode (TIC) from 19 to 250 amu at 2.9 scans s^{-1} , ionisation by EI at 70 eV by autotuning; MS-Scan after 3.5 min. The MSD is used for the identification of the volatile (flavour) compounds, the FID for their relative quantification.

2.3. Simultaneous distillation extraction

2.3.1. Reagents and chemicals

The same reference compounds (*, Tables 2–8) as mentioned above were used. All reagents and chemicals used were obtained from Sigma (St. Louis, MO, USA) or Merck (Munich, Germany). They were of "Purum" grade or better. *N*-pentane was supplied by Panreac (Montcada y Reixat, Spain).

2.3.2. Sample preparation

The grated cheese sample was weighed (5 g) to a precision of 1 mg and finely dispersed in 50 mL ultrapure water. Finally, $300 \,\mu\text{L}$ of a methanolic camphor solution (0.035 mg mL⁻¹) was added as an internal standard and the sample was homogenised using an Ultra-Turrax[®] (IKA-Labortechnik, Germany).

2.3.3. Extraction of the volatiles

A microversion of the distillator–extractor (Chrompack, Middelburg, The Netherlands) was used in a configuration suitable for a solvent lighter than water (Godefroot et al., 1981).

2.3.4. Gas chromatography

Semi-quantitative GC analysis was performed using an HP 5870 (Hewlett-Packard, Avondale, PA, USA) equipped with a crosslinked polyethylene glycol column HP-INNOWax ($60 \text{ m} \times 0.22 \text{ mm}$ i.d. $\times 0.25 \text{ µm}$ film thickness). Helium was employed as carrier gas with a flow of 1 mL min⁻¹. Injection volume was 1 µL by split mode with a split ratio of 1:60; injector temperature was 200°C. The FID was operated at 250°C. The oven temperature programme was as follows: 35° C for 1 min, 3° C min⁻¹ to 170°C, 4°C min⁻¹ to 200°C, 200°C for 20 min. Chromatograms were recorded using two-level attenuation.

Identification (qualitative analysis) of volatile compounds was performed with a gas chromatograph 6890 HP coupled with a 5973 HP MSD. The analysis was carried out under the following conditions: ionisation voltage, 70 eV; source temperature, 230° C; scanned range, 19-300m/z; scanned velocity, 3 scans s^{-1} . The elution conditions were the same as those detailed above.

3. Results and discussion

The qualitative and semi-quantitative results are summarised in Tables 2–8. The components identified are listed by chemical functional groups. Tables A list the volatile compounds found in each cheese (n = 1) and with each extraction method (suspension or dry) using the DHS. Tables B show the results obtained using the SDE. The values indicate the peak height (arbitrary units) of each compound. Fig. 1 (on the top: the dry method; on the bottom: the suspension method) and Fig. 2 show the volatile profile from Fiore Sardo cheese by DHS and SDE techniques, respectively.

3.1. Hydrocarbons

The DHS (Table 2A) made it possible to detect the hydrocarbons with a low boiling point, particularly using the dry extraction method. On the other hand, the heavier hydrocarbons were easily detected using the SDE technique (Table 2B). The first technique detected methyl benzene (toluene) in all cheese varieties analysed, while the SDE technique detected toluene in the Roncal cheese only. This aromatic hydrocarbon, already detected in the Beaufort and Comté cheese types (Dumont & Adda, 1978; Dumont, Adda, & Rousseaux, 1981), may be due to the freezer storage of the samples (Bosset, Gubler, Bütikofer, & Gauch, 2000).

The Roncal cheese was the only cheese type that contained mono-unsaturated hydrocarbons such as 2octene, 4-octene and 1-heptene. 3-Octene was found in Roncal and in Pecorino Sardo cheese types. 1,4-Pentandiene, 1,3-pentandiene and 3,7-dimethyl-1,6-octadiene were detected in the 7-month-ripened Pecorino Sardo cheese only.

3.2. Alcohols

The DHS (Table 3A), particularly the so-called "dry method", was more efficient in the extraction of light primary alcohols. Among the primary alcohols

Table 3

(A) Alcohols found using the dynamic headspace technique coupled with GC/MS^{a}

Peak no.	Compounds	LRI ^b (SPB-1)	Roncal 5 Months		Pecorino Sardo				Fiore Sardo		References
		(22 = 2)			1 Month		7 Months		8 Months		
			Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	—
2	Ethanol*		110,000	824,000	710,000	1,190,000	18,000	191,000	9100	705,000	5, 7, 9, 10
5	Propan-2-ol*		2860	21,300			1220	11,000	60,000	221,000	5,7, 10
8	2-Propen-1-ol	526	2130	17,400						1300	
11	Propan-1-ol*	537	7440	46,400	10,000	22,000	522	1500	3900	13,000	5, 7, 9, 10
17	Butan-2-ol*	586	143,000	192,000	187,000	180,000	3312	4320	44,700	62,600	1, 5, 7, 9, 10
19	2-Methyl-propan-1-ol*	617	2010	3960	22,000	25,000	673	1500	16,000	27,500	1, 7, 9, 10
23	Butan-1-ol*	653	1860	6350			1040	2800	12,000	23,500	5, 8, 9, 10
36	3-Methyl-butan-1-ol*	721	8960	17,900	82,000	141,000	3420	3400	49,300	52,700	7, 8, 9, 10
37	2-Methyl-butan-1-ol*	725	1650	29,600	9000	21,000	562		9200	10,800	7, 8
40	Pentan-1-ol*	752					1330	1460	1200	770	3, 5, 6, 7, 8, 9
29	Pentan-2-ol*	687	715	24,200			4850	12,000	97,000	123,800	7, 8, 9, 10
57	Hexan-2-ol*	852							1700		1, 5, 6
33	Heptan-1-ol*	700						927			3, 8, 9
63	Heptan-2-ol*	885					1590		1600		3, 7, 8

(B) Alcohols found using the simultaneous distillation extraction (SDE) coupled with GC/MS^{a}

Peak no.	Compounds	LRI ^c	Roncal	Pecorino Sardo		Fiore Sardo	References
		(IININO Wa	5 Months	1 Month	7 Months	8 Months	
4	Butan-2-ol*	1016		3263			2, 7, 9, 10
9	Pentan-2-ol	1118	839		1385	33,063	1, 2, 7, 8, 9, 10
14	Butan-1-ol, 3-methyl*	1214	2897	12,771		9117	5, 9, 10
15	Hexan-2-ol*	1234				1357	
21	Heptan-2-ol*	1334	2852	154	2699	18,151	3, 4, 8, 9
24	Octan-2-ol	1399	323				
30	Hexan-1-ol, 2-ethyl	1474	123				4, 7, 9
36	Nonan-2-ol	1574	1043		5175	2518	5
38	Nonen-2-ol	1636	275	139			8
40	Endo-borneol*	1669	76				
63	Benzene methanol	2044		1218		7039	
65	Benzene ethanol*	2089	278	2558			4

(A) Ketones found using the dynamic headspace technique coupled with GC/MS^{a}

Peak no.	Compounds	LRI ^b	Roncal		Pecorino S	Pecorino Sardo				lo	References
		(SPB-1)	5 Months		1 Month	1 Month		7 Months			-
			Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	_
4	Propanone*		10,100	71,200	4700		56,000	492,000	160,000	1,113,000	10
14	Butan-2-one*	569	227,000	429,000	161,000	370,000	7520	17,000	16,700		1, 5, 6, 7, 9, 10
13	Butan-2,3-dione	558		5490	3500	70,000	790	17,000		1700	7, 10
12	3-Buten-2-one	557	1440			, i i i i i i i i i i i i i i i i i i i		ŕ			, ,
35	3-Penten-2-one	716								500	
28	3-Hydroxy-butan-2-one	684				6600					6, 8, 9, 10
25	Pentan-2-one*	673	5100	17,300	1400	4440	313,000	563,000	427,000	636,300	1, 3, 5, 7, 9, 10
38	3-Methyl-pentan-2-one*	738					719	1400	2100	2500	8
44	Hexan-2-one*	771					14,000	13,000	6700	11,300	3, 6, 8, 9, 10
61	Heptan-2-one*	872	978	939	782	780	134,000	106,000	53,000	32,400	2, 3, 6, 7, 8, 9, 10
66	3-Methyl-heptan-2-one	930					258				
72	Octan-2-one*	969						442			6, 8
80	Nonan-2-one*	1075					16,000	3700		1400	3, 5, 6, 7, 8, 9, 10
43	Cyclopentanone	766								5900	
56	Cyclohexanone	820							400		

(B) Ketones found using simultaneous distillation extraction (SDE) coupled with GC/MS^{a}

Peak no.	Compounds	LRI ^c	Roncal	Pecorino Sardo		Fiore Sardo	References
		(IININO wax)	5 Months	1 Month	7 Months	8 Months	
2	Pentan-2-one	971	1003	867	23,336	15,927	4, 7, 8, 10
8	Hexan-2-one*	1092	142	466	1285	1948	1, 3, 4, 6, 8, 10
12	Heptan-2-one*	1199	6471	1891	103,317	85,451	1, 2, 3, 4, 5, 6, 7, 8, 10
19	Octan-2-one	1319	262		2813	1501	4, 8
20	3-Hydroxy-butan-2-one*	1331		401			4, 7, 8, 9, 10
26	Nonan-2-one*	1436	17,132	1052	139,188	53,452	2, 3, 4, 6, 8, 10
32	8-Nonen-2-one	1494			3924	835	8
37	3,5-Octadien-2-one	1580		326			
43	Undecan-2-one	1680			11,452	1273	4, 5, 8
59	Dodecan-2-one	1980		317	2304		8

(A) Aldehydes found using the dynamic headspace technique coupled with GC/MS^{a}

Peak no.	Compounds	LRI ^b	Roncal		Pecorino Sa	Pecorino Sardo				Fiore Sardo	
		(5PB-1)	5 Months		1 Month		7 Months		8 Months		
			Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	-
1	Ethanal*		3010	14,400	46,000	106,000	222,000	730,000	3000	20,300	1, 7
3	2-Propenal		2200								
10	2-Methyl-propanal*	531			860		2200	1500	800	640	10
20	2-Butenal	627					519	1700			
21	3-Methyl-butanal*	638	484	859	111,000	20,000	7200	10,000	25,700	35,400	1, 6, 7, 9, 10
22	2-Methyl-butanal*	649			16,000	3900	4600	6500	6800	10,100	1, 7, 9, 10
26	Pentanal*	678							13,500	18,600	1, 6, 9
45	Hexanal*	780					595	521	1500		1, 6, 9
82	Nonanal*	1089	2240	375							8, 9, 10
85	Decanal*	1193	3670	258		276					8, 10

(B) Aldehydes found using simultaneous distillation extraction (SDE) coupled with GC/MS^a

Peak no.	Compounds	LRI ^c	Roncal	Pecorino Sardo		Fiore Sardo	References	
		(IININO wax)	5 Months	1 Month	7 Months	8 Months		
1	3-Methyl-butanal	957				6870	2, 4, 7, 8, 9, 10	
7	Hexanal	1089	500	1347			9	
13	2-Heptanal	1207		1420				
28	Nonanal	1441		359			4, 8, 9, 10	
34	Methional*	1506	123	270	382		8	
35	2,4-Heptadienal	1529		238				
42	Phenyl acetaldehyde	1674		459			4	
41	2-Nonenal	1669	275	139				
49	Benzene acetaldehyde	1775			2551	1172		
58	2,4-Decadienal	1977		708				
61	Tetradecanal	2017						
66	Unknown	2124			1225			

(A) Esters found using the dynamic headspace technique coupled with GC/MS^{a}

Peak no.	Compounds	LRI ^b	Roncal		Pecorino	Sardo	Fic		Fiore Sard	0	References
		(3PD-1)	5 Months	5	1 Month	1 Month		ns	8 Months		
			Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	—
16	Formic acid, ethyl ester*	580								490	1, 10
6	Acetic acid, methyl ester	511								950	
18	Acetic acid, ethyl ester*	599	3700	7700	5900	11,000	2800	12,000	54,500	78,600	5, 6, 7, 10
32	Acetic acid propyl ester	698	503	956						2100	1, 5
39	Acetic acid, 1-methyl propyl ester	746	594	797							
48	Acetic acid, butyl ester	795							770		9
58	Acetic acid, 3-methyl butyl ester	860							1900	1500	
31	Propanoic acid, ethyl ester*	696			320				1700	2400	5, 9
34	Butanoic acid, methyl ester*	707		662			1050	1560	25,300	33,500	8, 9
46	Butanoic acid, ethyl ester*	785	8930	9340	12,000	13,000	2200	2900	216,000	213,700	1, 3, 5, 6, 7, 8, 9
55	Butanoic acid, isopropyl ester	816							6900		8
62	Butanoic acid, propyl ester*	880	492						8200	5600	1, 8, 9
67	Butanoic acid, 2-methyl propyl ester	939							4400	2800	
59	Butanoic acid, 2-propenyl ester	865							1000		
77	Butanoic acid, 3-methyl butyl ester	1039			1400				8200	4600	
65	Butanoic acid, hexyl ester	922							2500		
64	Hexanoic acid, methyl ester*	905						523	4800	3100	3, 8, 9
73	Hexanoic acid, ethyl ester*	979	1170	778	3750	2500	420	201	42,800	25,000	2, 6, 7, 8, 9, 10
74	Hexanoic acid, 1-methyl ethyl ester	1018							1500	880	
83	Hexanoic acid, 2-methyl propyl ester	1136							468		
81	Hexanoic acid, propyl ester*	1076							2700		9
84	Octanoic acid, ethyl ester*	1179				602			1600	420	3, 2, 6, 7, 8, 9
86	Octanoic acid, 3-methyl butyl ester	1237							600		

(B) Esters found using simultaneous distillation extraction (SDE) coupled with GC/MS^{a}

Peak no.	Compounds	Compounds LRI ^c Roncal Pecorino Sardo (INNOWax)			Fiore Sardo	References		
			(5 Months	1 Month	7 Months	8 Months	
6	Butanoic acid, ethyl ester*	1044				7264	1, 2, 3, 5, 6, 7, 8, 9	
11	Butanoic acid, 2-methyl propyl ester	1174				510		
16	Butanoic acid, butyl ester	1240				693	8, 9	
17	Hexanoic acid, ethyl ester*	1249	454	520	1585	12,278	2, 3, 5, 6, 8, 9, 10	
18	Butanoic acid, methyl propyl ester	1292				4629		
22	Acetic acid, heptyl ester	1386	720					
23	Hexanoic acid, propyl ester	1389				909		
27	Hexanoic acid, 2-methyl propyl ester	1436	159			941		
29	Hexanoic acid, butyl ester	1455				976	8	
31	Octanoic acid, ethyl ester*	1477	301			5462	7, 8, 9	
33	Hexanoic acid, 3-methyl butyl ester	1503				3115		
46	Decanoic acid, methyl ester*	1705	271			9314	2, 3, 5, 9	
50	Decanoic acid, ethyl ester*	1791				10,740	2, 3, 4, 5, 6, 8, 9, 10	
51	Octanoic acid, isoamyl ester	1816				3056		
56	Dodecanoic acid, methyl ester*	1975	40			1287	5, 8	
64	Dodecanoic acid, ethyl ester*	2057	238			4550	4, 5, 6, 8	
76	Octadecanoic acid, methyl ester	2422	703					
78	9-Octadecenoic acid, methyl ester	2466	7348					
79	9,12-Octadecenoic acid, methyl ester	2478	384					

(A) Fatty acids found using the dynamic headspace technique coupled with GC/MS^{a}

Peak no.	Compounds	LRI ^b (SPB1)	Roncal 5 Months		Pecorino Sardo				Fiore Sardo		References
					1 Month		7 Months		8 Months		
			Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	-
15	Acetic acid*	570								10,200	7, 8, 9, 10
27	Propanoic (Propionic) acid*	684								3500	8, 9, 10
42	Butanoic (Butyric) acid*	765							2800	12,900	3, 4, 5, 7, 8, 9, 10
60	Pentanoic acid	869								1600	3, 4, 8, 9
70	Hexanoic (Caproic) acid*	951								6000	3, 4, 7, 8, 9

(B) Fatty acids found using simultaneous distillation extraction (SDE) coupled with GC/MS^a

Peak no.	Compounds	LRI ^c (INNOWax)	Roncal	Pecorino Sardo		Fiore Sardo	References	
			5 Months	1 Month	7 Months	8 Months		
45	2-Methyl propanoic acid*	1691				1090	6, 8, 10	
47	Butanoic acid*	1721	1174		1283	217,924	3, 4, 5, 6, 7, 8, 9, 10	
54	Pentanoic acid	1892				6973	6, 8, 9	
55	4-Methyl pentanoic acid	1953				7559	6	
60	Hexanoic acid*	2001	6043	794	20,544	1,653,057	3, 4, 6, 7, 8, 9	
62	3-Methyl pentanoic acid	2029				4566	6	
67	Heptanoic acid*	2140	210		522	19,199	4, 6, 7, 8, 9	
72	Octanoic acid*	2241	17,769	537	63,867	1,370,344	2, 3, 4, 5, 6, 8, 9	
74	Nonanoic acid	2357	349		903	17,154	6, 8, 9	
77	Decanoic acid*	2446	26,361	4943		1,322,056	2, 3, 4, 5, 6, 8	
80	9-Decenoic acid	2519	993			21,972	6	
81	Undecanoic acid	2561	210			5548		
83	Dodecanoic acid*	2657	4212	1645	14,151	87,076	2, 3, 5, 8	
84	Tetradecanoic acid*	2756	1306	916	11,452	15,150	2, 3, 5, 8	

Table 8 Lactones, phenols and miscellaneous found using simultaneous distillation extraction (SDE) coupled with GC/MS^a

Peak no.	Compounds	LRI ^b	Roncal	Pecorino Sa	ırdo	Fiore Sardo	References
		(IINNOwax)	5 Months	1 Month	7 Months	8 Months	—
52	δ -Octalactone	1826				1056	4, 8
73	y-Decalactone	2249	118				4, 8
75	δ -Dodecalactone	2395	238		596		4, 5
82	Hexadecalactone	2621			531		4
68	4-Methyl phenol*	2162	343	110		5819	4, 6
69	2-Methyl phenol*	2174				5543	4
70	Phenol-4-methyl-2-methoxy	2184				3521	4
71	Phenol*	2209				3581	4, 9
3	Chloroform*	999	2107		700	5842	9, 10

^aSee Table 2 footnotes.

identified (C2–C7) ethanol was the most abundant in all cheese types. It originates from a direct fermentation of acetaldehyde by lactic acid bacteria (Imhof, Isolini, & Bosset, 1990). The formation of other primary alcohols in cheese may be mainly due to the reduction of the correspondent aldehydes (Dumont & Adda, 1979; Behnke, 1980; McSweeney & Sousa, 2000). The SDE technique (Table 3B) detected predominantly secondary alcohols in the range C4–C9.

Methyl-branched primary alcohols, 2-methyl-1-propanol, 2-methyl-1-butanol and 3-methyl-1-butanol were detected in all cheese types analysed using the DHS. 3-Methyl-1-butanol, which develops a pleasant aroma of fresh cheese (Moio, Dekimpe, Etievant, & Addeo, 1993a), is very abundant in the unripened Pecorino Sardo cheese. These branched-chain primary alcohols are produced by the reduction of the corresponding aldehydes which are derived from isoleucine, valine and leucine, respectively.

Among the secondary alcohols, heptan-2-ol was found in all cheese varieties. Butan-2-ol was the most abundant in Roncal and 1-month-ripened Pecorino Sardo cheeses. The ripened Pecorino Sardo cheese mainly contains pentan-2-ol and the Fiore Sardo cheese more propan-2-ol. The secondary alcohols, especially those with an odd carbon number, are derived by the reduction of the corresponding methyl ketones. Such components and in particular heptan-2-ol and nonan-2ol are typical components of blue cheese flavour (de Frutos et al., 1991).

During the ripening of Pecorino Sardo cheese a decrease in the concentration of several alcohols was observed: ethanol, propan-1-ol, butan-2-ol, 2-methyl-1-propanol, 3-methyl-1-butanol and 2-methyl-1-butanol. On the other hand, an increase in the concentration of propan-2-ol, butan-1-ol, pentan-1-ol, pentan-2-ol, heptan-1-ol, heptan-2-ol and nonan-2-ol was found. The strong reducing condition in hard cheeses may

favour the formation of alcohols from aldehydes and ketones.

3.3. Ketones

The same trend was observed using both of the techniques.

The DHS (Table 4A) and especially the dry method were once again more efficient for the extraction of ketones in comparison with the SDE (Table 4B) technique, even though the latter is able to extract longer-chain methyl ketones up to C12. All the methyl ketones with an odd number of carbons (C3–C9) were detected in all cheese varieties. They are formed at considerably higher levels than those with an even number of carbons (C4, C6, C8, C12). It is possible, even likely, that the odd-numbered methyl ketones are not present, or only present at a lower concentration in the unheated cheeses and are formed from β -ketoacid glycerides during the heating used in the extraction methods.

With the exception of butan-2-one and propan-2-one, Roncal cheese generally contained lower quantities of methyl ketones than Sardinian cheeses. In Pecorino Sardo cheese, the amount of methyl ketones generally increased during ripening. Undecan-2-one occurred only in very ripened Sardinian cheeses (7-month-old Pecorino Sardo and 8-month-old Fiore Sardo cheeses).

These volatile components are frequently present in many cheese varieties. They were detected in very high amounts in mould-ripened cheeses, where they play a key role because of their characteristic flavour (Behnke, 1980). Methyl ketones are probably derived from β -ketoacid triglycerides with β -keto-acids as intermediate products (Kinsella & Hwang, 1976; Adda, 1986).

Diacetyl, revealed with the DHS only, was found in all cheese types. It was more abundant in unripened

Fig. 1. Gas chromatography profile of volatile compounds extracted by dynamic headspace by dry method (top) and suspension method (bottom) from Fiore Sardo cheese at 8-month ripening. (The peak numbers refer to Tables 2–8.)

Fig. 2. Gas chromatography profile of volatile compounds extracted by simultaneous distillation extraction (SDE) from Fiore Sardo cheese at 8month ripening. (The peak numbers refer to Tables 2–8.)

Pecorino Sardo cheese where it decreases during ripening, being converted to acetoin. The former compound has a buttery nut-like flavour (Welsh, Murray, & Williams, 1989). The acetoin/diacetyl couple was detected only in the 1-month-old Pecorino Sardo cheese. These compounds are derived from citrate/ lactate metabolism.

3.4. Aldehydes

The same trend was established by the efficient extraction of the highly volatile aldehydes using the DHS (Table 5A), although the SDE (Table 5B) technique gives a better extraction for the aldehydes with a higher boiling point.

The DHS showed that acetaldehyde was the most abundant aldehyde in all cheese types except for Fiore Sardo. It increases during Pecorino Sardo ripening; this component is produced during lactose metabolism by lactic acid bacteria, but also by breakdown of threonine (Imhof et al., 1990). Similar to the trend for ketones, aldehydic compounds detected by DHS are more abundant in 7-month-old Pecorino Sardo and 8month-old Fiore Sardo cheeses. These cheeses contained pentanal which was not found in the unripened Pecorino Sardo and the Roncal cheeses. On the other hand, these latter cheeses contain nonanal and decanal. The straight-chain aldehydes (C4–C10) are formed during β -oxidation of unsaturated fatty acids (Collin et al., 1993). The branched-chain 2-methyl propanal, 2methyl butanal and 3-methyl butanal are present especially in the Sardinian cheeses, and probably originate from amino acid degradation (valine, isoleucine and leucine) by enzymatic pathways, as well as nonenzymatic processes (Behnke, 1980; Griffith & Hammond, 1989). The tentative interpretation of the abovementioned results is, nevertheless, doubtful due to the possible spontaneous β -oxidation of the unsaturated fatty acid during the frozen storage of the cheese sample.

3.5. Esters

The esters derived from acetic, propionic, butyric, caproic and caprylic acids were detected better by DHS (Table 6A). Using the SDE technique (Table 6B), the medium and longer chain esters, such as ethyl decanoate, dodecanoate, tetradecanoate and octadecanoate, were extracted.

Ethyl acetate, ethyl butyrate and ethyl hexanoate occurred in all cheese types. These substances decreased during the ripening of Pecorino Sardo cheese. Fiore Sardo cheese showed the highest content of esters. In this cheese the most abundant ester was ethyl butyrate, which was found in fruity-tasting cheeses such as Gruyère and Parmesan; ethyl esters are known for their strong fruity character (Barbieri et al., 1994; Arora, Cornier, & Lee, 1995).

Esterification of fatty acids with the primary alcohols occurs by an enzymatic or a chemical pathway (Behnke, 1980; Dumont & Adda, 1979).

3.6. Fatty acids

Fatty acids, with C2–C6 chains, were detected using the DHS (Table 7A) in the dry mode in the Fiore Sardo cheese only. The SDE technique (Table 7B), once again, was able to extract medium- or longer-chain fatty acids. The latter technique in fact made it possible to identify all short- and medium-chain fatty acids (C2–C14) in all cheeses.

In cheese, free fatty acids (≥ 4) originate from the lipolysis of milk fat (Urbach, 1993). Lipolysis may be due to the action of the native milk lipases in cheese made from raw milk, to the action of microbial lipases, even though lactic bacteria present in starter cultures only have a weakly lipolytic activity, or the action of the lipases present in the paste rennet used in cheesemaking. The free fatty acids content of Fiore Sardo cheese could be due to the lipase content of the rennet used for its manufacture. It is well known that the paste rennet used for the Fiore Sardo cheesemaking has high lipase activity (Pinna et al., 1999).

Over the ripening period considered for Pecorino Sardo (1 and 7 months) the free fatty acids increased. With the exception of decanoic and decenoic acids, the Roncal cheese had a lower content of the C4–C14 free fatty acids in comparison with the ripened Pecorino Sardo cheese, but the highest amount of free fatty acid was detected in the Fiore Sardo cheese.

Fatty acids are important components for the flavour of many cheese types. In particular, the short-chain fatty acids impart a desirable piquant taste to Italian cheeses such as Fiore Sardo cheese.

3.7. Lactones

The DHS was unable to detect the lactones. On the other hand, the SDE technique (Table 8) detected two δ -lactones (C8, C12) and two γ -lactones (C10, C12) already described by Urbach (1993). The importance of these compounds as well as esters, responsible for the fruity odour, is due to their low detection threshold, especially γ -lactones (Dufossé, Latrasse, & Spinnler, 1994). Some authors postulate a biosynthesis based on the dehydration and cyclisation generated from hydroxy fatty acids during ripening (Behnke, 1980; Dumont & Adda, 1979). These substances did not occur in the unripened Pecorino Sardo cheese.

3.8. Phenols

Phenolic compounds (Table 8) have very low perception thresholds, 1 ppb or less, with odour descriptors like sweet, medicinal, ewe, smoked, unpleasant. (Urbach, 1997). Such components, particularly those substituted with methyl and ethyl groups, were found in high concentration in the Fiore Sardo cheese only when using the SDE technique. Some authors described a phenolic odour as characteristic of ewes' milk cheese. In fact, this compound occurred at a higher level in ewes' than in cows' milk cheese (Moio et al., 1993b). Phenol is generated from the microbial breakdown of tyrosine (Parliment, Kolor, & Rizzo, 1982) or from conjugates by enzymes or heat.

3.9. Other components

Some terpenes such as α -pinene in Roncal and Fiore Sardo cheeses and limonene in the Roncal cheese were only detected using the DHS (Table 2A). They most probably originate from the activity of the microorganisms in the cheese (Berger, 1999) and not from the botanical composition of forage, which generally leads to the simultaneous occurrence of α - and β -pinene in the sample. This effect was clearly demonstrated in the highland region (Mariaca et al., 1997; Bosset et al., 1997).

4. Conclusions

The DHS technique extracts more highly volatile compounds than SDE. On the other hand, the latter technique is more efficient for extracting phenols, free fatty acids, lactones and heavier aldehydes, ketones, alcohols and esters. These two extraction methods are therefore complementary and it is desirable to combine both techniques in order to detect the largest number of volatile compounds from cheeses.

Using the DHS, the "dry method" made possible the extraction of a greater number of compounds and in a larger quantity than the "suspension technique" (Canac-Arteaga, Viallon, & Berdagué, 1999, 2000). This effect could be related to the higher solubility of polar compounds in the aqueous phase. A possible risk of the "dry method" is the higher probability of over-lapping of two chromatographic peaks, especially if they are very different in size. Nevertheless, a few compounds such as ethyl hexanoate, nonanal and decanal are better extracted using the "suspension technique".

With respect to different cheese varieties, a greater number of esters, free fatty acids, alcohols and phenols were found in the 8-month-ripened Fiore Sardo cheese than in the 5-month-old Roncal cheese. The latter was characterised by the presence of more 2-propenal, nonanal, decanal, 3-buten-2-one and unsatured hydrocarbons.

Pecorino Sardo cheese presents a different "finger print" of volatiles at different ripening stages (1 and 7 months). It is therefore possible to detect the influence of the ripening process. Some compounds present in the 1month-old cheese disappeared, e.g. decanal, benzene, octane, propanoic acid ethyl ester, butanoic acid 3methyl butyl ester and acetoin; other compounds decreased during ripening such as many alcohols, some ketones, 2,3-butanedione, butan-2-one, acetic, butanoic and hexanoic ethyl esters. Many other compounds such as aldehydes, some alkanes, ketones and alcohols appeared or increased as degradation products during ripening.

The diet of the sheep may influence the composition of the volatile fraction. The terpenes (limonene and α pinene) present in cheese from sheep which grazed on mountain fodders may be due to the consumption of green grass. This occurred in Roncal cheese from the Pyrénées' valley. α -Pinene was also detected in the Fiore Sardo cheese which is produced in a mountainous region of Sardinia, while these compounds do not appear in the Pecorino Sardo cheese manufactured in the hilly area of the island. These explanations are hypotheses; both components also have a possible microbial origin.

Due to the small number of samples considered for this preliminary study (one sample per cheese type and per ripening age), no data are available concerning the natural variability of these cheese varieties.

Acknowledgements

Financial support from the COST organization and EC/DG VI and XII as well as the Swiss Federal Office for Education and Science is gratefully acknowledged. We want to thank Mrs Gerda Urbach (Australia) and Mrs Angela Ryan (Nestle, PTC-York) for their valuable comments and for reviewing the manuscript.

References

- Adda, J. (1986). Flavour of dairy products. In G. G. Birch, & M. G. Lindley (Eds.), *Developments in food flavours* (pp. 151–172). London: Elsevier Applied Science.
- Arizcun, C., Barcina, Y., & Torre, P. (1997a). Identification of lactic acid bacteria isolated from Roncal and Idiazabal cheeses. *Le Lait*, 77, 729–736.
- Arizcun, C., Barcina, Y., & Torre, P. (1997b). Identification and characterization of proteolytic activity of *Enterococcus* species isolated from milk and Roncal and Idiazabal cheese. *Journal of Food Microbiology*, 38, 17–24.

- Arora, G., Cornier, F., & Lee, B. (1995). Analysis of odor-active volatiles in cheddar cheese headspace by multidimensional GC/ MS/sniffing. *Journal of Agricultural and Food Chemistry*, 43, 748– 752.
- Barbieri, G., Bolzoni, L., Careri, M., Manglia, A., Parolari, G., Spagnoli, S., & Virgili, R. (1994). Study of volatile fraction of Parmesan cheese. *Journal of Agricultural and Food Chemistry*, 42, 1170–1176.
- Behnke, U. (1980). Zur Biogenese des Käsearomas. Nahrung, 24, 71– 83.
- Berger, C. (1999). Composés d'arôme, en particulier soufrés, produits sur milieu fromager par la flore d'affinage de fromage à pâte molle: Importance de Geotrichum candidum. Thèse de doctorat, Institut National Agromique Paris-Grigon, 8 Novembre.
- Bosset, J. O., Berger, T., Bühler-Moor, U., Bütikofer, U., Collomb, M., Dafflon, O., Gauch, R., Jeangros, B., Lavanchy, P., Mariaca, R., Scehovic, J., Sieber, R., & Troxler, J. (1997) Comparison of some highland and lowland Gruyère-type cheese of Switzerland: A study of their potential PDO/AOC/AOP characteristics. In R. Amado, & R. Battaglia (Eds.), Authenticity and adulteration of food—the analytical approach. (). Proceedings of the symposium Euro food chem IX, Vol. 2, September 24–26, Interlaken, Switzerland (pp. 395-400). Swiss Society of Food and Environmental Chemistry, Druckerei Sailer, Wintherthur: FECS-Event No. 220.
- Bosset, J. O., & Gauch, R. (1993). Comparison of the volatile flavour compounds of six European 'AOC' cheeses by using a new dynamic headspace GC–MS method. *International Dairy Journal*, 3, 359– 377.
- Bosset, J. O., Gubler, M., Bütikofer, U., & Gauch, R. (2000). Mono-, di- and tri-methyl benzene in frozen cheese samples: Natural metabolites or environmental pollutants? *Travaux de chimie alimentaire et d'hygiène*, 91, 287–299.
- Botazzi, V., Arrizza, S., & Ledda, A. (1978). Impiego di colture di fermenti lattici nella produzione del Fiore Sardo. Scienza e Tecnica Lattiero Casearia, 29, 160–169.
- Canac-Arteaga, D., Viallon, C., & Berdagué, J. L. (1999). Effect of dry purge step on the analysis by dynamic headspace—GC–MS of the volatile fraction of a cheese. *Analusis*, 27, 780–785.
- Canac-Arteaga, D., Viallon, C., & Berdagué, J. L. (2000). Analytical artefacts caused by the presence of water vapor in the headspace of food products. *Analusis*, 28, 550–556.
- Careri, M., Manini, P., Spagnoli, S., Barbieri, G., & Bolzoni, L. (1994). Simultaneous distillation–extraction and dynamic headspace methods in the gas chromatographic analysis of Parmesan cheese volatiles. *Chromatographia*, 38, 386–394.
- Collin, S., Osman, M., Decambre, S., El-Zayat, A. I., & Dufour, J. P. (1993). Investigation of volatile flavor compounds in fresh and ripened Domiati cheeses. *Journal of Agricultural and Food Chemistry*, 41, 1659–1663.
- Dufossé, L., Latrasse, A., & Spinnler, H. E. (1994). Importance of lactones in food flavours—Structure, distribution, sensory properties and biosynthesis. *Sciences des Aliments*, 14, 17–50.
- Dumont, J. P., & Adda, J. (1978). Occurrence of sesquiterpenes in mountain cheese volatiles. *Journal of Agricultural and Food Chemistry*, 26, 364–367.
- Dumont, J. P., & Adda, J. (1979). Flavor formation in dairy products. In D. G. Land, & H. E. Nursten (Eds.), *Progresss in flavor research* (pp. 245–262). London: Applied Science Publishers.
- Dumont, J. P., Adda, J., & Rousseaux, P. (1981). Exemple de variation de l'arôme à l'intérieur d'un même type de fromage: Le comté. Lebensmittel-Wissenschaft und -Technologie, 14, 198–202.
- de Frutos, M., Sanz, J., & Martínez-Castro, I. (1991). Characterization of artisanal cheeses by GC and GC/MS analysis of their medium volatility (SDE) fraction. *Journal of Agricultural and Food Chemistry*, 39, 524–530.

- Fernández-García, E. (1996). Use of headspace sampling in the quantitative analysis of artisanal Spanish cheese aroma. *Journal* of Agricultural and Food Chemistry, 44, 1833–1839.
- Godefroot, M., Sandra, P., & Verzele, M. (1981). New method for quantitative essential oil analysis. *Journal of Chromatography*, 203, 325–335.
- González de Llano, D., Ramos, M., Polo, C., Sanz, J., & Martínez-Castro, I. (1990). Evolution of the volatile components of an artisanal blue cheese during ripening. *Journal of Dairy Science*, 73, 1676–1683.
- Griffith, R., & Hammond, E. G. (1989). Generation of Swiss cheeses flavor components by reaction of amino acids with carbonyl components. *Journal of Dairy Science*, 72, 604–613.
- Ha, J. K., & Lindsay, C. (1991). Contributions of cow, sheep, and goat milks to characterizing branched-chain fatty acid and phenolic flavors in varietal cheeses. *Journal of Dairy Science*, 74, 3267–3274.
- Horwood, J. F., Lloyd, G. T., & Stark, W. (1981). Some flavour components of Feta cheese. *The Australian Journal of Dairy Technology*, 36, 34–37.
- Kinsella, J. E., & Hwang, D. (1976). Biosynthesis of flavors by Penicillium roqueforti. Biotechnology and Bioengenerie, 18, 927–938.
- Imhof, R., Isolini, D., & Bosset, J. O. (1990). Vergleich der Produktion einiger flüchtiger Aromakomponenten in Greyerzerkäsen und Kulturüberständen zwischen homofermentativen und heterofermentativen Lactobacillen. Lebensmittel-Wissenschaft und -Technologie, 23, 305–311.
- Larráyoz, P., Ibáñez, F. C., Torre, P., Ordóñez, A. I., & Barcina, Y. (1999). Volatile compounds characterization of Roncal cheese by analytical supercritical fluids extraction. In Office for Official Publications of the European Communities. *Proceedings of the symposium on quality and microbiology of traditional and raw milk cheeses* (p. 339). Dijon.
- Ledda, A., Murgia, A., & Arrizza, S. (1978). Indagine sulla tecnología di fabbricazione del Fiore Sardo. Scienza e Tecnica Lattiero Casearia, 29, 145–159.
- Ledda, A., Scintu, M. F., Pirisi, A., & Piredda, G. (1996). Pecorino Sardo semi-cooked ewe's milk cheese. *International symposium EAAP-CIHEAM-FAO* Badajoz, Spain.
- Ledda, A., Scintu, M. F., Pirisi, A., Sanna, S., & Mannu, L. (1994). Caraterizzazione tecnologica di ceppi di lactococchi e di enterococchi per la produzione di formaggio pecorino Fiore Sardo. *Scienza e Tecnica Lattiero Casearia*, 45, 443–456.
- Mariaca, R. G., Berger, T., Gauch, R., Imhof, M., Jeangros, B., & Bosset, J. O. (1997). Occurrence of volatile mono- and sesquiterpenoids in highland and lowland plant species as possible precursors for flavour compounds in milk and dairy products. *Journal of Agricultural and Food Chemistry*, 45, 4423–4434.
- Mariaca, R., & Bosset, J. O. (1997). Instrumental analysis of volatile (flavour) compounds in milk and dairy products. *Le Lait*, 77, 13– 40.
- McSweeney, P. L. H., & Sousa, M. J. (2000). Biochemical pathways for the production of flavour compounds in cheeses during ripening. A review. *Le Lait*, 80, 293–324.

- Millán, R., Alcalá, M., Sanjuán, E., Penedo, J. C., & Castelo, M. (1992). Componentes fisicoquimicos y nitrogenados del queso Roncal. *Alimentacion, equipos y tecnología*, 6, 51–64.
- Moio, L., & Addeo, F. (1998). Grana Padano cheese aroma. Journal of Dairy Research, 65, 317–333.
- Moio, L., Dekimpe, J., Etievant, P. X., & Addeo, F. (1993a). Volatile flavour compounds of water buffalo Mozzarella cheese. *Italian Journal of Food Science*, 5, 57–68.
- Moio, L., Dekimpe, J., Etievant, P. X., & Addeo, F. (1993b). Volatile flavour compounds in the raw milks from different species. *Journal* of Dairy Research, 60, 199–213.
- Oria Almudia, R., & Sala Trepat, F. J. (1992). Aspectos bioquímicos del proceso madurativo del queso Roncal. Tecnología de los alimentos. *Monografía de Princípe de Viana. Departamento de Educación y Cultura. Gobierno de Navarra, 11–12* (pp. 293–313).
- Ortigosa, M., Torre, P., & Izco, J. M. (2001). Effect of pasteurization of ewe's milk and use of a native starter culture on the volatile components and sensory characteristics of Roncal cheese. *Journal* of Dairy Science, 84, 1320–1330.
- Parliment, T. H., Kolor, M. G., & Rizzo, D. J. (1982). Volatile components of Limburger cheese. *Journal of Agricultural and Food Chemistry*, 30, 1006–1008.
- Pettinau, M., Nuvoli, G., & Podda, F. (1978). Rilievi sulla composizione chimica del Fiore Sardo. Scienza e Tecnica Lattiero Caesaria, 29, 169–181.
- Pinna, G., Pirisi, A., Piredda, G., Addis, M., & Di Salvo, R. (1999). Effect of milk thermisation on Fiore Sardo PDO cheese: 2. The lipolysis progress during ripening. *Scienza e Tecnica Lattiero Caesaria*, 50, 366–377.
- Piredda, G., Pirisi, A., Ladu, A., Melis, G., Cappuccio, U., & Chianese, L. (1995). Seasonal changes in the microflora and physico-chemical characteristics of Fiore Sardo ewe's cheese. *IDF Seminar on Production and utilization of ewe's and goats milk*, Crete, Greece, 19–21 October.
- Piredda, G., Pirisi, A., Scintu, M. F., Addis, M., Ledda, A., & Chianese, L. (1996). Fiore Sardo hard uncooked ewe's milk cheese. *International symposium EAAP-CIHEAM-FAO*, Badajoz, Spain, 29 September–2 October.
- Pirisi, A., Pinna, G., & Papoff, C. M. (1999). Effect of milk thermisation on Fiore Sardo PDO cheese: 1. Physicochemical characteristics. *Scienza e Tecnica Lattiero Caesaria*, 50, 353–365.
- Scintu, M. F., Ledda, A., Floris, R., & Sanna, S. (1995). First study on the microbial population of Pecorino Sardo cheese made from raw ewe's milk. *Second Plenary meeting joint meeting with COST '95 action*, Vitoria, Spain, 30 November–2 December.
- Urbach, G. (1993). Relations between cheese flavor and chemical composition. *International Dairy Journal*, *3*, 389–422.
- Urbach, G. (1997). The flavour of milk and dairy products II. Cheese: Contribution of volatiles compounds. *International Journal of Dairy Technology*, 50, 79–89.
- Welsh, F. W., Murray, W. D., & Williams, R. E. (1989). Microbiological and enzymatic CRC. *Critical Reviews in Biotechnology*, 9, 105–169.