# Rumen fermentation and milk fat composition of dairy cows fed linseed and hay or fresh grass

F. Dohme<sup>1</sup>, M. R. L. Scheeder<sup>2</sup>, M. Collomb<sup>1</sup>, W. Stoll<sup>1</sup> and G. Bee<sup>1</sup>
<sup>1</sup>Agroscope Liebefeld-Posieux, Swiss Federal Research Station for Animal Production and Dairy Products (ALP), Posieux, Switzerland
<sup>2</sup>Institute of Animal Sciences, Animal Nutrition, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland



## <u>Introduction</u>

- ✓ Fresh grass and linseed are rich in linolenic acid (18:3*n*-3).
- Rumen micro-organisms effectively biohydrogenate unsaturated fatty acids.
- ✓ In grass 18:3*n*-3 is predominately bound to glycolipids and in linseed to triacylglycerols.

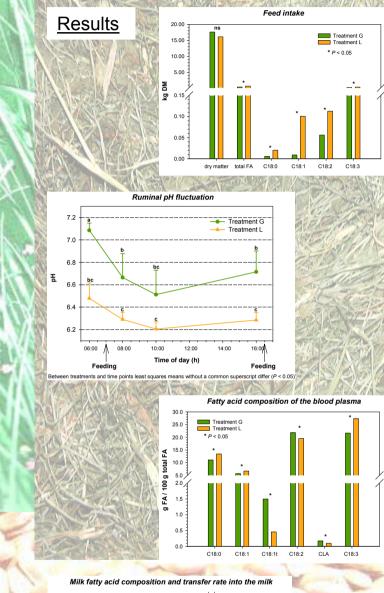
Does the lipid source affect the transfer rate of 18:3*n*-3 into the milk ?

Do the feedstuffs affect rumen fermentation?

## Material and Methods

#### Animals

- 6 multiparous ruminally cannulated Brown Swiss cows
- Milk yield: 19.1 ± 3.7 kg/d
- Days in milk: 150 ± 8


# Experimental design

- Cross over design
- 16 d adaptation period and 5 d data collection period

| <i>I reatment</i> | G          | L        |
|-------------------|------------|----------|
| Fresh grass       | 60-70 kg/d |          |
| Linseed           |            | 1.6 kg/d |
| Hay               |            | 9.0 kg/d |
| Mineral feed      | 300 g/d    | 300 g/d  |

## Fatty acid composition (% of total fatty acids)

|                  | Linseed | Hay  | Fresh grass |
|------------------|---------|------|-------------|
| 16:0             | 5.9     | 18.4 | 12.0        |
| 18:0             | 3.4     | 1.7  | 1.4         |
| 18:1             | 18.5    | 4.0  | 2.2         |
| 18:2 <i>n</i> -6 | 16.5    | 18.9 | 14.2        |
| 18:3 <i>n</i> -3 | 54.9    | 56.9 | 69.0        |



20

\* = P < 0.05

C18:2

transfer rate

C18:0 C18:1 C18:1t C18:2 CLA

fatty acid profile

# <u>Summary</u>

- ⇒ Treatment G increased ruminal pH compared to treatment L.
- ⇒ The CLA concentration and the transfer rate of 18:2*n*-6 but not of 18:3*n*-3 was higher in treatment G compared to treatment L.