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Abstract
On-line breath analysis using secondary electrospray ionization coupled to high-resolution mass
spectrometry (SESI-HRMS) is a sensitive method for biomarker discovery. The strengths of this
technology have already been demonstrated in the clinical environment. For the first time, this
study demonstrates the application of SESI-HRMS in the field of nutritional science using a
standardized nutritional intervention, consisting of a high-energy shake (950 kcal, 8% protein, 35%
sugar and 57% fat). Eleven subjects underwent the intervention on three separate days and their
exhaled breath was monitored up to six hours postprandially. In addition, sampling was performed
during equivalent fasting conditions for selected subjects. To estimate the impact of inter- and
intra-individual variability, analysis of variance simultaneous component analysis was conducted,
revealing that the inter-individual variability accounted for 30% of the data variation. To
distinguish the effect of the intervention from fasting conditions, partial least squares discriminant
analysis was performed. Candidate compound annotation was performed with pathway analysis
and collision-induced dissociation (CID) experiments. Pathway analysis highlighted, among
others, features associated with the metabolism of linoleate, butanoate and amino sugars. Tentative
compounds annotated through CID measurements include fatty acids, amino acids, and amino
acid derivatives, some of them likely derived from nutrients by the gut microbiome (e.g.
propanoate, indoles), as well as organic acids from the Krebs cycle. Time-series clustering showed
an overlap of observed kinetic trends with those reported previously in blood plasma.

1. Introduction

Nutrition is a major factor contributing to human
health and consequently understanding the interac-
tion of dietary intake with human metabolism is
an important focus of life sciences research. Liquid
chromatography–mass spectrometry (LC–MS) is one
of the main analytical methods for identifying and
monitoring biomarkers in body fluids, stemming
from various types of foods [1–10]. While such bio-
markers are mostly related to the intake of specific

types of foods, there have been studies focusing on
biomarkers that reflect the response of human meta-
bolism to diet and the effect of diet on obesity,
diabetes, nutritional disorders and metabolic flexib-
ility/metabolic health [11–15]. These studies often
use nutritional challenges in the form of high-
calorie shakes to measure nutrition-specific meta-
bolic molecules. While most of these studies are
based on blood and urine sample collection and
analysis, research utilizing off-line breath analysis
(e.g. using sampling bags, adsorption tubes, or
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exhaled breath condensate) has been published track-
ing intervention-related volatile organic compounds
(VOCs) [11, 16].

Despite minimal use of breath sampling in nutri-
tional sciences to-date, the non-invasive nature of
the sampling and the associated possibility of high
sampling frequency naturally lends itself to the field.
As a direct on-line sampling technique, second-
ary electrospray ionization (SESI) coupled to high-
resolution mass spectrometry (HRMS) could enable
nutritional research to be conducted on exhaled
breath samples with high sensitivity and frequency
in real-time [17]. There is no precedent of utilizing
SESI-MS for on-line breath analysis in nutritional
studies, though proton transfer reaction-mass spec-
trometry (PTR-MS) has been used: Hageman and
co-workers used PTR-MS for following the meta-
bolic response on exhaled breath upon the con-
sumption of a low and high-fat dairy drink [18].
Since SESI offers greater sensitivity and better cov-
erage of the mass region above 100/mz (allowing the
analysis of polar high-molecular-weight compounds)
compared to PTR-MS [19], on-line breath ana-
lysis using SESI-HRMS could be a valuable comple-
mentary method for nutritional breath metabolom-
ics investigations. For this purpose, questions about
sources of variation, the typical postprandial breath
metabolomics profile observed by SESI-HRMS and
metabolites′ kinetics following dietary exposures
should be considered.

This report uses a standardized meal in the form
of a high-energy shake to address these questions.
The shake used in our study was developed to assess
the phenotypic resilience/flexibility of the postpran-
dial response to a nutritional challenge and trig-
gers 26 metabolic processes in more than seven
organs, including among others the gut, adipose
tissue, vasculature, muscle, liver, kidney, and pan-
creas [13]. The dynamic response to this interven-
tion is a measure of metabolic health and systemic
stress. Due to the wide impact on the human meta-
bolome, the use of such an intervention in the con-
text of nutritional breath research is highly relevant.
This study therefore utilizes SESI-HRMS to charac-
terize, for the first time, the chemical composition
of the human postprandial breath metabolome in
response to the ingestion of a standardized nutri-
tional shake and compares it to the fasting state dur-
ing the same time period. It investigates the intra-
and inter-individual breath metabolome variability
and monitors the kinetic response of features of
nutritional interest over a postprandial period of
six hours. It highlights metabolic pathways associ-
ated with the macronutrients involved and provides
candidate compound annotation via tandem MS
experiments.

2. Methodology

2.1. Study subjects and nutritional intervention
For this study, 11 subjects (three female, eight male)
were recruited. Previous nutritional studies with
similar group sizes have demonstrated the discovery
of thousands of metabolites with statistical signific-
ance responding to different interventions [20, 21].
The average age of the subjects was 29 ± 3 years and
the average body mass index was 24.2 ± 2.8 kg m−2.
All subjects were non-smokers and did not suffer
from chronic diseases, food intolerances, or food
allergies. Subjects underwent a nutritional challenge
consisting of a shake adapted from Wopereis et al
[13]. It consisted of water (tap water, 320 ml), dex-
trose (84 g, Lee Sports GmbH, CH), protein powder
(20 g, Protifar® Nutricia, NL), sunflower oil (60 g,
Migros Bio, CH) and vanilla aroma (20 droplets, Lee
Sports GmbH, CH), providing a 950 kcal shake with
the sunflower oil accounting for 57%, dextrose for
35% and the protein powder accounting for 8% of the
total calorie count.

The nutritional challenge was tested with a day
interval between each test for each subject to allow the
investigation and evaluation of the intra- and inter-
individual variability of their postprandial breath
metabolome. This resulted in three measurement
days in total per subject (figure 1(a)).

On the day preceding the intervention, subjects
were asked to refrain from drinking alcoholic bever-
ages, eating spices, allium vegetables, and to consume
the last meal no later than 12 h before the start of
the intervention. Before arriving at the test site, sub-
jects followed their usual morning routine with the
mentioned restrictions. Upon arrival in the test labor-
atory, the subjects delivered fasting breath samples
for baseline measures, approximately 15 min before
the intervention. In addition, the subjects filled out a
questionnaire about their diet during the day before
their participation. For each of the subjects, the stand-
ardized shake was consumed within 5 min. Following
the ingestion of the shake, subjects rinsed theirmouth
with a standard quantity of water (1 l) to reduce the
detection of shake-relevant residual molecules in the
oral cavity. Postprandial breath samples were collec-
ted at predefined times after consumption: 15, 30,
60, 90, 120, 150, 180, 210, 240, 270, 300, 330, and
360 min, resulting in measurements over six hours
after consumption. To normalize subjects’ hydra-
tion, the subjects were allowed to drink water ab
libitum during the post-ingestion period. No other
foods or fluids were permitted for consumption dur-
ing the laboratory testing. During the experiment
period, subjects remained in close proximity to the
instrumentation and were asked tominimize physical
activity.
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Figure 1. (a) Experimental design of the nutritional intervention and subsequent measurements. A baseline measurement
designated at−15 min was recorded for each subject before the intervention. Each subject underwent this experiment on three
days separated by a washout day (n= 11). (b) Design of a cross-over experiment to distinguish the response to the intervention
from fasting. Each of the subjects who participated in this investigation were randomly assigned to complete the fasting and
nutritional intervention on six different days.

The impact of fasting conditions on the observed
metabolites was also explored to confirm that the
observedmetabolomic changes were due to the nutri-
tional challenge. Thus, a further experiment was per-
formed by a subgroup of three subjects to compare
shake and no-shake consumption in a randomized
crossover design, with each condition repeated three
times (with a 1 d interval between each test). The same
experimental conditions and sampling protocol were
applied for the fasting test day with the sole difference
being that the shake was not consumed. This resul-
ted in six additional measurement days in total per
participant (figure 1(b)).

The study was conducted in accordance with the
Declaration of Helsinki and was approved by the eth-
ics committee of the ETHZurich (EK-2021N-45). All
subjects were provided with written information on
the study design prior to inclusion in the investigation
and provided (written) consent for participation.

2.2. SESI-HRMS experimental setup
On-line chemical analysis of exhaled breath was car-
ried out using a commercial SESI source (Fossil Ion
Tech, Spain) attached to a Q-Exactive Plus Orbit-
rap (Thermo Fischer, Germany). The MS vacuum
was achieved and maintained in stable low-pressure
values. As a forepump, a single-stage rotary pump
(SOGEVAC Sv 40 BI, Oerlikon Leybold Vacuum) was
used. A turbomolecular pump (SplitFlow310, Pfeiffer
Vacuum) created a stable vacuum in the C-trap,
while the ultra-high vacuum in the analyzer chamber
was obtained by a TURBOVAC TW 290/20/20-UHV
(Oerlikon Leybold Vacuum). The operating pres-
sure during experiments was maintained stable at
8×10−11 mbar. Pressure, breath flow rate and breath
volume were simultaneously recorded using a flow
meter (EXHALION, Fossil Ion Tech, Spain), connec-
ted at the front-end part of the sample transfer line.
Both the positive and the negative ion production and
detection modes were employed and for each ioniza-
tionmode, three full exhalations (duration∼20 s and
volume∼3 l per exhalation) were recorded per ioniz-
ation mode, participant and time point; resulting in
six exhalations per measurement time. During breath

sampling, subjects exhaled through a spirometry fil-
ter (VyaireMedical, Germany) and a heated sampling
line at 130 ◦C into the ionization chamber kept at
90 ◦C constantly. The electrospray solution was a
0.1% aqueous formic acid solution passing through a
nano-electrospray capillary (inner diameter= 20µm,
outer diameter = 365 µm, Fossil Ion Tech, Spain)
with an overpressure of 0.8 bar. The water used
for the preparation of the electrospray solution was
LC-MS grade purchased from Fisher Scientific and the
formic acid (99.5% purity) was obtained from VWR
Chemicals. The electrospray solution was interacting
horizontally with breath samples for charge transfer
prior to introduction in the MS for analysis. Sheath
and auxiliary gas values were adjusted to 15 psi and
2 a.u. respectively. The electrospray solution voltage
was set to ±3.5 kV (depending on the ionization
mode used) and the MS inlet capillary was heated to
250 ◦C. For the C-trap, the automatic gain control
target was adjusted to 106 and the maximum injec-
tion time to 500ms. Themass resolution of theOrbit-
rap was set to 140 000. The RF frequency and drive
voltage for the C-trap and Obritrap used during our
experiments were the standard settings provided by
Thermo Fischer. Specifically, the voltage of the cent-
ral electrode of theQ-Exactive PlusOrbitrapwas 5 kV
and the RF frequency was 1.5 Hz for a 140 000 res-
olution. For the C-trap, the drive voltage was 1 kV.
To reduce ion competition within the C-trap, a spec-
tral stitching technique was employed [22]. Specific-
ally, during the first three exhalations, SESI-HRMS
operated in the positive ion mode with the first scan
covering the m/z range of 50–500 and the next ones
the m/z ranges of 50–132, 132–195, 195–277 and
277–500. During the last three exhalations in the neg-
ative mode, it scanned the mass ranges m/z 50–500,
and then a scan from 50 to 90, 90 to 161, 161 to
255 and 255 to 500. The mass windows were then
stitched together using built-in-house pre-processing
algorithms as described in section 2.3.

2.3. Data pre-processing
All mass spectra were processed with a custom-
written Python (v3.7) script run on the Euler
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cluster at the ETH Zurich. The individual raw files
of the recorded measurements were converted to
mzML-files with ProteoWizard [23]. The individual
mass spectrometric scans were interpolated with a
step of 10−5 from 50 to 500/mz and subsequently
summed and averaged with all recorded scans over
all conducted measurements to obtain a composite
mass spectrum. Individual peaks were then detected
in the composite mass spectrum and the peak width
was determined at 90% of the peak’s height. The
intensity of the individual peaks was then determ-
ined in all scans through integration within the
peak extends, yielding a time trace matrix for each
measurement. The time traces of each measurement
were subsequently aligned with the recorded exhal-
ation patterns and if a feature had a significantly
higher intensity during exhalation, the mean intens-
ity was calculated and stored. The data pre-processing
workflow is schematically described in figure S1.

2.4. Statistical analysis
Prior to statistical analyses, features were scaled to the
total feature intensity within one measurement. For
the assessment of various influences on the obtained
data, analysis of variance simultaneous component
analysis (ASCA) was conducted with the factors of
the experimental design as potential sources. Briefly,
ASCA separates data variance according to the exper-
imental design factors of the measurement as well as
the cross-terms and conducts principal component
analysis on each variation source [24–26]. The exper-
imental design was based on three factors: (a) day, (b)
time and (c) subject. For the obtained data, the factors
of each sample were the measurement day (1, 2, 3),
subject (1, 2, up to 11) and the time point ofmeasure-
ment (−15 min (corresponds to the baseline meas-
urement), and post-shake consumption at 15 min,
30 min, 60 min, and up to 360min with 30min inter-
vals). Each feature was scaled according to its stand-
ard deviation before the application of ASCA. ASCA
calculations were performed with a customMATLAB
(Version 2020b) script.

To distinguish a response to the nutritional inter-
vention, partial least squares discriminant analysis
(PLS-DA) was conducted with data obtained on the
subgroup of three subjects who completed interven-
tion and fasting test days utilizing the scikit-learn lib-
rary [27]. By fitting a PLS-DA model to the data,
measurements could be classified as being related to
either fasting or intervention and the contributing
features interpreted as being associatedmorewith one
of these states. For this purpose, features were scaled
between different measurements to the 80% quantile
and subsequently filtered with the condition that they
contain less than 50% non-zero values in all measure-
ments. For optimization of the latent variable number
needed for the classification, the data were split into
100 iterations [training (60%) and test (40%) set].
PLS-DA was then performed with increasing latent

variable numbers for each run applying k-folds for
optimization. For performance evaluation, the mean
accuracies over all runs were evaluated for each lat-
ent variable number. After choosing the number of
latent variables, PLS-DA analysis was repeated with
the set number. Features with a positive PLS-DA coef-
ficient were deemed to be associated with the con-
ducted intervention, whereas features with a neg-
ative coefficient were deemed not to be associated
with the intervention. For each feature, a variable
importance in the projection score (VIP-score) was
calculated.

To gain an overview of average kinetic trends of
the detected features, k-means cluster analysis was
performed with the tslearn library [28] for Python,
setting the number of clusters to five to be compar-
able to literature [13] and utilizing soft dynamic time
warping as a metric (figure S2).

2.5. Annotation of metabolites
To obtain putative candidate structural informa-
tion for selected features on level 3 annotation
[17, 29], collision-induced dissociation (CID) exper-
iments were conducted with the exhalations from
two subjects (a subgroup of the whole study group)
undergoing shake consumption on a separate exper-
imentation day. These two subjects underwent an
additional nutritional intervention and provided
exhalations continuously for the duration of the
respective CID-experiments. To prepare these CID-
experiments, features were divided into three seg-
ments relating to the maximum intensity within the
measurement time and grouped as features with
early (0–2 h), middle (2–4 h), and late (4–6 h)
responses, resulting in three-time intervals where
subjects provided breath samples. Features whose
maximum intensity was below 104 were excluded.
The residual features were then divided into two
groups depending onwhether the intensity of the pre-
cursor made up at least 50% of total intensity within
the 0.4/mz quadrupole isolation window or not. If a
feature had a maximum intensity over the threshold
(50% of the intensity within the window) direct frag-
mentation with the same settings as in section 2.3 and
collision energies of 10, 35 and 50 was attempted. For
features below the threshold, an incremental quad-
rupole acquisition for resolving spectra (IQAROS)
sequence was set up [30]. Briefly, scans were set up
with the same collision energies and a mass resolu-
tion of 17 500. For each precursor, the isolation win-
dowwasmoved over the precursor’sm/z value in steps
of 0.05/mz starting from −0.6/mz to +0.6/mz relat-
ive to the precursor mass. Through this modulation
and linear regression, a reconstructed fragment spec-
trum was obtained for each precursor. These spectra
were then processed with SIRIUS [31]. For molecu-
lar formula calculations, the elements C, H, O, N and
S were considered to restrain the ionized species to
[M + H]+, [M + H2O + H]+, [M–H2O + H]+,
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[M–H]− and [M + H2O–H]−. Database search for
potential hits was restricted to the human meta-
bolome and the KEGG databases [32, 33]. For path-
way analysis based on MS1-data, the mummichog
algorithm was used with a cut-off p-value of 10−3

[34]. Briefly, the mummichog algorithm is a pathway
annotation tool with tolerance to technological noise
and biological sampling, which predicts functional
activities directly from spectral features bypassing
metabolite identification. The input p and log2-fold
change values were calculated through comparison
with the baseline measurements.

3. Results and discussion

3.1. Impact of the experimental design factors
To assess the impact of the nutritional intervention
on the postprandial human breath metabolome, the
exhalations of 11 subjects were recorded over six
hours with SESI-HRMS. Each subject underwent the
intervention on three separate days. In total, 5083
features were detected in the positive and 4004 in
the negative ion mode. Features were further filtered
according to whether they were detected in at least
50% of all measurements, thus resulting in 3147 fea-
tures in the positive and 1951 features in the negative
ion mode.

Table S1 summarizes the variances of ASCA
for each experimental factor and their interactions.
Among the experimental parameters and their inter-
actions with each other, the highest variance was
explained by the individual subjects and the inter-
action of all three experimental parameters (both at
30%). (figure 2(a))

The first principal component of the subject
contribution reveals the clustering of some subjects
(figure 2(b)). Most of the clustered scores were from
subjects measured in the same week (grouped within
circles in figure 2(b)), therefore indicating a batch
effect within the variation purely caused by sub-
jects. The subject component could be interpreted
as a measure of inter-individual variability and the
day component as intra-individual variability. ASCA
clearly revealed the strong difference between the
pure effect of these factors, with variation between
subjects being an order ofmagnitude larger than vari-
ation within subjects. Unfortunately, the separation
of biological and instrumental variation was not pos-
sible with the experimental design of this study, as
the number of measured subjects was not the same
in different weeks. This means that the experimental
factor of subject did not only contain information
about the subject, but the week in which the sub-
ject underwent the intervention. Due to this imbal-
ance, it was not possible to estimate with ASCA, how
much of the 30% contribution to the total data vari-
ation related to a biological cause and how much
to a change in instrumental conditions. Balancing
the subject number within the different intervention

weeks in future studies would at least enable ASCA
to separate the corresponding effects. The reduc-
tion of variation contribution of week and subject
factor would then be a question of standardization
procedures.

The time effect itself was not responsible for most
of the variation in the data, however its principal
components reveal underlying longitudinal trends
within all measurements (figure 2(c)). The initial
three time-related principal components describe a
change of measurements with the score being a
measure of similarity between measurements. The
first component describes a continuous change from
baselinemeasurements towardsmeasurements recor-
ded at the end. The second component exhibits a sig-
nificant change from baseline measurements to the
ones directly after it. This sharp increase coincides
with the nutritional intervention and is an indication
of the intervention having an impact on the meas-
ured compounds. Component three shows the same
trend as observed for component two in the early
postprandial phase (0–90 min), but with a faster
return towards the baseline, followed by a sub-
sequent increase in signal intensity This suggests the
reappearance of certain metabolites associated with
the intervention towards the end of the experiment
day.

3.2. Characterization of breath response after
shake consumption
To distinguish potential breath metabolites arising
due to the nutritional intervention, three subjects
underwent a further cross-over intervention. They
were randomly assigned to either consumed the
shake or continued the overnight fasting for all six
measurement days to minimize technical variation.
The obtained intensity matrices after spectra pre-
processing were evaluated by PLS-DA. Five latent
variables were chosen to fit the data after optimiza-
tion through splitting the data 100 times into train-
ing and test data sets and repetitive k-folds validation
(figure S2).

The fitted PLS-DA model achieved a 0.96 area
under the curve for the receiver operating charac-
teristic (figure S2). Features with a mean positive
PLS-DA loading coefficient were deemed to be asso-
ciated with the nutritional intervention, whereas ones
with a negative coefficient were seen as fasting-related
compounds. Furthermore, features with VIP score of
more than 1.3 and a positive coefficient were selected
for structural elucidation through CID experiments.
Applying the fitted PLS-DA model on the data set of
all 11 subjects, a prediction accuracy of 84% for all
post-intervention samples was obtained.

For the intervention-related compounds, the
p-values and log2-fold changes were calculated. For
the p-value calculation, a Kruskal–Wallis test was per-
formed comparing the baseline measurements with
the subsequent ones, log-fold changes were calculated

5
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Figure 2. (a) Explained variance of the total data related to the factors of the experimental design as determined with ASCA. The
highest variability was explained by the individual subjects. Other major contributions to data variation were the interaction
terms of the experimental parameters with the three-term interaction being of the same magnitude as the participant factor.
(b) First two principal components’ scores of the subject effect. The circle contains subjects measured in the same week. (c) The
first three principal components of the time effect. Each dot represents one time point with all the associated measurements. The
first principal component describes a change over all measurements with the last measurements exhibiting the largest difference
from the start. The second component differs strongly from the baseline measurement to the subsequent measurements with a
slow return to the baseline measurement towards the end. A similar trend is observed for the third component, although
measurements become more similar in value to the baseline after two hours and subsequently diverge again.

similarly, comparing the baseline with subsequent
measurements [35]. The p-values were further util-
ized for pathway analysis. Figure 3 shows a dis-
crimination of up- and down-regulated features fol-
lowing the nutritional intervention within all 11
subjects.

3.3. Pathway analysis and tentative compound
annotation
To identify the metabolic pathways that are modu-
lated by the nutritional intervention, pathway analysis
was conducted applying the mummichog workflow
[34] through MetaboAnalyst [36]. For this purpose,
all intervention-related features (features with a pos-
itive PLS-DA coefficient in both positive and negative
ionization mode) with their corresponding p-values
were considered.

The mummichog algorithm annotated 74 meta-
bolic pathways (figure 4 and table S2) with a total of
162 unique candidate metabolites linked with them.
The resulting tentative pathways were expected to be
intervention-related since the input for the mum-
michog analysis contained the features filtered with

the PLS-DA loading coefficients. The comparison of
the detected pathways with their classification in the
KEGG pathway maps [33] supports this hypothesis
as the butanoate, amino sugar, propanoate, pyruvate,
glyoxylate metabolism and citric acid cycle are part of
the carbohydrate, fat and protein metabolism, which
was potentially modulated by the ingested shake.
Pathways linked to the ingestion of fats were linoleate
metabolism and fatty acid oxidation, both of which
showed a large log fold change compared to the
baseline measurement. The source of the fat (sun-
flower oil) used in the intervention can additionally
be connected to the limonene and pinene degradation
pathway since both these substances are found within
the oil [37]. Pathways relating to the metabolism of
most of the amino acids present the protein powder
were enriched with methionine, cysteine and glutam-
atemetabolic pathways showing the highest gamma-
adjusted p values as determined by the algorithm.

An annotated compound given by the mum-
michog algorithm, alpha-ketoglutaric acid (AKG)
was part of 18 out of the 74 annotated path-
ways, including butanoate metabolism, methionine
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Figure 3. Volcano plot showing potential metabolites up- and down-regulated after the nutritional intervention. The
−log10(p)-values were calculated through a Kruskal–Wallis test, log2-fold change through comparison with baseline
measurements [35]. Features shown in red (n= 1011) exhibit both a significant group difference and an increase in detection
compared to the baseline. Features depicted in blue show a significant difference, but not a sufficient increase, the ones in black
exhibit neither.

Figure 4.Mummichog enrichment analysis results as a function of the gamma-adjusted (γ) p values and enrichment factor (EF)
with the MFN database serving as [36].

and cysteine metabolism, as well as glutamate meta-
bolism. AKG has previously been detected in breath
using SESI-HRMS [38] and is an interestingmolecule
not only due to being part of the citric acid cycle
[39] but also serving multiple roles in the degrad-
ation of amino acids [40]. The second most fre-
quently observed potential metabolite after AKG was
acetate with 14 associated pathways, which among
other endogenous sources, is a product of dietary
amino acid fermentation by the gut microbiome to
short-chain fatty acids (SCFAs) [41]. Among the
pathways that produce acetate, the degradation of
methionine and cysteine pathway obtained the highest

gamma-adjusted p value in the mummichog ana-
lysis. Other pathways which included acetate were the
butanoate and pyruvate metabolism which were both
enriched in the analysis.

To gain additional insights into the identity of
the detected features, CID experiments were con-
ducted with two subjects, whose breath was ana-
lysed in real-time after undergoing the nutritional
intervention, revealing 260 tentative annotated com-
pounds. The precursors’ ions were selected accord-
ing to their VIP score (>1.3) within the PLS-DA
model. As real-time analysis poses unique challenges
connected to the number of different molecules
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Figure 5. Selected structural candidates of intervention-related compounds as determined by PLS-DA after in-silico fragment
analysis of MS2-data ordered into different groups indicated by color. Compounds 1–7 are fatty acids of varying length and
functionalization with propanoic acid 7 being the shortest that was annotated. The amino acids 8–12 represent the variety of
these compounds, even two-amino acid compounds such as 11 were potentially observed. The category of hydrocarbons contains
the substances 13–16, representing the trend that the majority of these compounds contain six-membered rings or even aromatic
moieties. The classes of gut microbiome-related (5, 7, 17–19), and citric acid cycle molecules (20, 21) show the effect of the
intervention not only directly after it, but also late responses.

reaching the collision cell and consequently leading
to chimeric fragment spectra, a recently developed
methodology improving real-time MS2-experiments
called IQAROS was employed [30]. After processing
the data, the reconstructed fragment spectra were
processed within SIRIUS [31] to obtain structural
candidates for each feature with the help of the
HMDB [32] and KEGG [33] database. According to
a proposed annotation confidence scheme [29], the
workflow used in our experiments lead to level three
structural candidates. This means that the structures
obtained shown in figure 5 (CID-spectra reported in
table S3) represent one possible isomer among sev-
eral different ones derived from in-silico fragment
matching.

Two hundred and sixty five structural candidates
were found for the intervention-related metabolites
which belong mostly to three chemical categories:
fatty acids, amino acids, or hydrocarbons (figure 5).
The suggested fatty acids cover the lengths from pro-
panoic acid 7 to decanoic acid 4 and undecenoic
acid 1. Decanoic acid 4 is classified as a medium-
chain fatty acid and the source was likely the sun-
flower oil with the acid being in the form of triacyl-
glycerols, which are metabolised by enzymes in the
saliva and stomach [42]. Both undecenoic acid 1 and
octanedioic acid 2 are connected to the breakdown

of longer fatty acids or have a more complicated
origin. Among the candidate metabolites were also
the SCFAs 3, 5 and 7, that are likely products of
the gut microbiome metabolism [43]. SCFAs are
mainly produced from dietary fibers (though given
the nutritional composition of the intervention this
source is unlikely) or undigested sugars [44], as well
as amino acids [45]. Within the structural candid-
ates for intervention-related compounds, additional
metabolites were foundwhich relate to the gutmicro-
biome. Dimethyl sulfone 17, indole 18 and indole-
3-carboxaldehyde 19 were among these metabolites.
Dimethyl sulfone 17 has been proposed to be formed
frommethanethiol followed by subsequent oxidation
and was confirmed to be a common substance to be
found in the blood [46]. Both indole 18 and its alde-
hyde form 19 relate to the catabolism of tryptophan
with varying bacterial strains playing a crucialpart
[47–49].

Multiple amino acids structures and relatedmeta-
bolites were highlighted after the in-silico fragment
comparison. These structures included serine 8 and
valine 9, as well as the 2-amino-3-oxabutanoic acid
10 and the dipeptide glycine-cysteine 11. These
compounds could be attributed to the exogenous
source of amino acids from the protein powder of
the nutritional intervention or could be endogenously
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Figure 6. Five resulting clusters from K-means clustering with individual median feature traces, normalized to their maximum (in
red) and the median of the cluster represented in black. Cluster 1 and 2 described a continuous decrease and increase, respectively,
over the six-hour experimentation period. Most features fell into cluster 3, where an increase over two hours was observed,
followed by a flattening. Cluster 4 exhibited a sharp rise after the intervention with a subsequent decrease after 90 min. In the final
cluster 5, the trends showed a maximum in the period from two to four hours. The number (n) of the observed features per
cluster is shown on the title of each subfigure.

produced compounds that were modulated by the
intervention. On the other hand, the reason for the
modulation of diaminopimelic acid 12, which does
not feature in postprandial amino acid metabolism,
was unclear.

The proposed hydrocarbons (13–16) do not fea-
ture in any of themetabolic pathways typically associ-
ated with the consumed nutrients and likely relate to
the components of the utilized oil [50] ormay be con-
taminants derived from the sampling material. Iso-
prene 13 is a ubiquitousmolecule in breath [51], sim-
ilarly to toluene 14 [52] and are classified as belonging
to the exposome.

In terms of glycolysis and the citric acid cycle (the
major metabolic pathways of sugar), only fumaric
acid 20 and pyruvic acid 21were potential hits within
the fragment data. Fumaric acid 20was already shown
to be detectable by SESI-HRMS [38]

3.4. Time trends related to the nutritional
intervention
The experimental design included 14 measurements
over the time period of six hours. It is, therefore,
possible to follow multiple features over time and to
compare their kinetic trends with previously reported
ones [13–15]. For this purpose median kinetic trends
of individual features were clustered with the help of
the tslearn library [28]. To compare the clustering res-
ults with those reported [13] in blood plasma analysis,
the number of clusters was set to five.

As shown in figure 6, cluster 1 contained 287 fea-
tures that decreased after the intervention over the
experimental period of over six hours as indicated by

the mean of all time traces within this cluster. Within
cluster 2, 518 features followed an opposite trend after
the consumption of the shake, a steady increase over
the experiment. In cluster 1, the features decreased
immediately after the intervention. Some features
within cluster 2 reacted intensely right after the inter-
vention and a rise towards the end was observed.
The 977 features of cluster 3 rise towards the two-
hour mark and subsequently flatten, indicative of
metabolic products of the nutrients present in the
intervention. Cluster 4 exhibited wash-out kinetics
of intervention-related components (255 features).
The 255 features of cluster 5 show similar trends to
those of cluster 3. The underlying features might have
been secondary metabolites of the macronutrients
and thus increase up to two hours, but they decreased
again as they were further metabolized.

A comparison of the observed time clusters with
the ones reported for blood plasma metabolites
by Wopereis et al [13]. for the shake intervention
revealed a large overlap of the observed clusters:
except for cluster 5, all others had an analogwithin the
time traces reported for blood plasma metabolites.

An important measure to follow the fatty acid
metabolism is by monitoring carnitine and its acet-
ylated derivatives [53, 54]. These molecules were pre-
viously detected in human breath using SESI-HRMS
[55]. Acetylcarnitine reacts intensely to the inter-
vention with its intensity dropping within the first
30 min, while carnitine increases (figure 7(a)). The
trends of these molecules were opposite to each other
as one would expect from the fact that acetylcarnitine
is used by the body for energy storage and is formed
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Figure 7. (a) Normalized mean time traces of carnitine and acetylcarnitine from all subjects over six hours. In terms of their
behavior, these molecules were expected to show an inverse relationship [11]. This was true for most time intervals except the last
hour. (b) Mean acetone time traces of each subject with the mean trend depicted as a dotted black line. (c) Mean time traces of
selected compounds illustrating the general behavior of these metabolites after the nutritional intervention. Propionate and
butyrate increased sharply after the intervention but fell quickly again. Indole and pyruvate rose slowly and their decrease was
steadier compared to propionate and butyrate. The intensity for decanoate decreased within the first three hours, then rose and
was followed by a follow-up decrease.

from carnitine [53, 54]. A significant inter-individual
variation was observed for acetone (figure 7(b)).
Between subjects, a large difference in signal intens-
ity was distinguishable and sudden spikes of the acet-
one intensity were observed for multiple subjects. As
the data were normalized to the total ion current of
the measurement, a large acetone excess could sup-
press other ions, thus being overrepresented and lead-
ing to these observed spikes. As one of the major
components of breath VOCs [51], interindividual
differences would also lead to major differences
between intensities and account for the observed
differences.

Selected time traces of metabolites annotated
through CID-experiments (figure 7(c)) illustrate the
various trends captured through SESI-HRMS. The
anions propionate and butyrate rose after the inter-
vention within the first 15 min and decayed expo-
nentially again. A study [56] on postprandial SCFA
anion levels within blood after glucose consump-
tion reported a rise in propionate levels after the
four-hour mark [56]. Such a rise was not observed
within the data reported here. Increasing the time of
measurement after the intervention would be thus
favourable for following gutmicrobiome activity with
SESI-HRMS. Indoles, compounds that are associated
with gutmicrobiome fermentation [49], did not react
immediately to the intervention, in contrast to the
SCFAs. Instead, the intensity increased until around
three hours after which a slow decrease followed.
Within the six-hour measurement period, the level
did not return to the baseline measurement. Sim-
ilar behavior was observed for pyruvate, although
at the four-hour mark a decrease in intensity was
detected, after which it increased again. A potential
hypothesis of this drop could be the switch from cata-
bolism to anabolism. Decanoate, as a representat-
ive of medium-chain fatty acids, followed a less clear
trend, the intensity decreased after the intervention

and subsequently underwent twice a cycle of rising
and falling in levels.

The annotated breath metabolite trends
registered with SESI-HRMS gave an accurate rep-
resentation of metabolite kinetics reported for blood
plasma after a nutritional intervention, although at
the individual level the variation had a non-negligible
influence. Targeted analysis of selected metabolites
with comparison to blood plasma LC-MS analysis
could deliver additional insight into themagnitude of
variation between SESI-HRMS and standard LC-MS.

4. Conclusions

A nutritional intervention with subsequent on-line
breath measurements to follow the impact over six
hours was conducted showing the utility of on-
line SESI-HRMS for nutritional metabolomics. To
distinguish the effect of the intervention on meta-
bolism, a cross-over experiment was conducted com-
paring the state of fasting with the intervention.
Subsequent PLS-DA revealed features related to the
intervention. These features were then mapped to
metabolic pathways, indicating multiple pathways
connected to chemical components of the inter-
vention. Each macronutrient class represented in
the nutritional challenge seemed to have caused a
response within the human metabolome and thus
confirms the relevance of SESI-HRMS breath analysis
for following postprandial human behaviour. MS2

experiments after the intervention indicated potential
structural candidates for significant features. Among
the identified candidates were the classes of fatty
acids, amino acids, and unsaturated hydrocarbons, as
well as molecules related to gut microbiome activ-
ity and the citric acid cycle. Further nutritional stud-
ies utilizing this technique could therefore rely on
these classes of metabolites. The metabolites could
be detected with targeted experiments as one way
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to closely monitor selected representatives of these
classes. Following the kinetics of selected metabolites
upon the nutritional intervention revealed an over-
lap of the observed mean trends with the ones repor-
ted in the literature. Comparison of acetone kinetics
between individuals revealed large fluctuations and
differences, exemplifying the need for a higher degree
of standardization and control of measurements to
minimize potential instrumental variation to achieve
better comparability of individual kinetics.

The results presented here serve as a basis for fur-
ther endeavours at the important interface of nutri-
tional science, metabolomics, and breath research.
This work illustrates the potential of SESI-HRMS as a
new important tool at the intersection of these fields
as well as, more generally, for nutritional science.
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