

J. Dairy Sci. 106:3421–3435 https://doi.org/10.3168/jds.2022-22496

© 2023, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association[®]. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Staphylococcus aureus adlb gene is associated with high prevalence of intramammary infection in dairy herds of northern Italy: A cross-sectional study

A. M. Maisano,¹*† M. Luini,^{1,2}* A. Gazzola,¹ L. Sala,¹ F. Vezzoli,¹ L. Bertocchi,³ V. Lorenzi,³ P. Cremonesi,² B. Castiglioni,² S. Bergagna,⁴ A. Romano,⁵ E. Scaltriti,⁶ L. Bolzoni,⁶ I. Ivanovic,⁷ A. Romanò,^{1,7} and H. U. Graber⁷

¹Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, 26900 Lodi, Italy

²Institute of Agricultural Biology and Biotechnology, National Research Council, 26900 Lodi, Italy

³Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Reparto Produzione e Controllo Materiale Biologico, 25124 Brescia, Italy

⁴Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Laboratorio Benessere Animale, 10154 Torino, Italy

⁵Reference Laboratory for Coagulase-Positive Staphylococci Including *Staphylococcus aureus*, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10154 Torino, Italy.

⁶Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, 43126 Parma, Italy ⁷Agroscope, Food Microbial Systems, Group Microbiological Safety of Foods of Animal Origin, 3003 Bern, Switzerland

ABSTRACT

Staphylococcus aureus is a major mastitis pathogen in dairy cattle worldwide, responsible for substantial economic losses. Environmental factors, milking routine, and good maintenance of milking equipment have been described as important factors to prevent intramammary infections (IMI). Staphylococcus aureus IMI can be widespread within the farm or the infection can be limited to few animals. Several studies have reported that Staph. aureus genotypes differ in their ability to spread within a herd. In particular, Staph. aureus belonging to ribosomal spacer PCR genotype B (GTB)/ clonal complex 8 (CC8) is associated with high withinherd prevalence of IMI, whereas other genotypes are generally associated with individual cow disease. The adlb gene seems to be strictly related to Staph. aureus GTB/CC8, and is a potential marker of contagiousness. We investigated Staph. aureus IMI prevalence in 60 herds in northern Italy. In the same farms, we assessed specific indicators linked to milking management (e.g., teat condition score and udder hygiene score) and additional milking risk factors for IMI spread. Ribosomal spacer-PCR and *adlb*-targeted PCR were performed on 262 Staph. aureus isolates, of which 77 underwent multilocus sequence typing. In most of the herds (90%), a predominant genotype was identified, especially Staph. aureus CC8 (30%). In 19 of 60 herds, the predominant circulating Staph. aureus was adlb-positive and the ob-

*These authors contributed equally to this work.

served IMI prevalence was relevant. Moreover, the *adlb* gene was detected only in genotypes of CC8 and CC97. Statistical analysis showed a strong association between the prevalence of *Staph. aureus* IMI, the specific CCs, and carriage of *adlb*, with the predominant circulating CC and presence of the gene alone explaining the total variation. Interestingly, the difference in the odds ratio obtained in the models for CC8 and CC97 suggests that it is carriage of the *adlb* gene. rather than the circulation of these CCs per se, that leads to higher within-herd prevalence of Staph. aureus. In addition, the model showed that environmental and milking management factors had no or minimal effect on Staph. *aureus* IMI prevalence. In conclusion, the circulation of adlb-positive Staph. aureus strains within a herd has a strong effect on the prevalence of IMI. Thus, *adlb* can be proposed as a genetic marker of contagiousness for Staph. aureus IMI in cattle. However, further analyses using whole-genome sequencing are required to understand the role of genes other than *adlb* that may be involved in the mechanisms of contagiousness of Staph. *aureus* strains associated with high prevalence of IMI. Key words: Staphylococcus aureus, mastitis, adlb gene, dairy cattle

INTRODUCTION

Staphylococcus aureus is one of the most important pathogens causing mastitis in dairy cattle worldwide, and it results in economic losses for dairy farmers in terms of reduced milk yield and quality and increased treatment costs (Hogeveen et al., 2011). The spread of this bacteria within a herd primarily happens during milking, and management factors such as milking rou-

Received July 8, 2022.

Accepted November 16, 2022.

[†]Corresponding author: antoniomarco.maisano@izsler.it

tine and the good maintenance of milking equipment are important to prevent Staph. aureus IMI (Dufour et al., 2012). Nevertheless, it has been reported that Staph. aureus IMI may be widespread in many herds but not in others, where the infection is limited to a few animals, suggesting a central role of the strain circulating within the herd and involved in the IMI. Several studies have reported that different Staph. aureus genotypes are associated with different virulence and pathogenicity properties. In particular, Staph. aureus genotype B (**GTB**) is associated with high contagiousness and pathogenicity, leading to high within-herd prevalence of IMI. In contrast, other genotypes are associated with individual cow disease and rarely seem to cause herd health problems (Fournier et al., 2008; Graber et al., 2009; Cremonesi et al., 2015; Cosandey et al., 2016). Moreover, Staph. aureus GTB seems to be highly associated with the mammary gland (Leuenberger et al., 2019). Specific sanitation programs based exclusively on the identification and management of Staph. aureus GTB-positive dairy herds were successfully carried out in Switzerland (Sartori et al., 2018). Thus, discrimination between different genotypes seems to be important for *Staph. aureus*-targeted control programs (Barkema et al., 2006; Sartori et al., 2018; Exel et al., 2022). Although previous studies investigated the virulence factors and mechanisms that could facilitate Staph. aureus colonization of the mammary gland and its establishment and persistence in the host tissue (Monistero et al., 2018; Hoekstra et al., 2020; Pérez et al., 2020; Vaughn et al., 2020), no study to date has clearly identified a single marker or combination of markers capable of predicting Staph. aureus contagiousness within a herd. The possible association between the circulating Staph. aureus strain (in terms of genotype and virulence factors) with specific farm health parameters, including the incidence of clinical mastitis or the prevalence of subclinical IMI, has been evaluated (Dufour et al., 2012; Luini et al., 2015; Magro et al., 2017). Using a stochastic bio-economic model, Exel et al. (2022) proposed different control strategies based on the described epidemiological and clinical differences between different Staph. aureus strains.

Sartori et al. (2017) demonstrated that the singlecopy gene *adlb* is strictly related to *Staph. aureus* GTB and may be a potential marker of contagiousness. This gene encodes the adhesion-like bovine protein and is located in the GTB-specific staphylococcal cassette chromosome SCCgtb. A study conducted in northern Italy on bulk tank milk samples confirmed the association between *Staph. aureus* GTB and the presence of *adlb*, even though some non-GTB strains also carry the gene (Gazzola et al., 2020). Boss et al. (2016) reported that 80% of *Staph. aureus* strains isolated in 12 European countries belonged to only 6 different clonal complexes (**CC**), of which CC8, CC705, and CC97 were the most frequent. Additionally, the distribution of sequence types (**ST**) differs based on the considered country and region of interest (Boss et al., 2016; Cvetnić et al., 2021). Recently, Gazzola et al. (2020) investigated the distribution of multilocus sequence typing (**MLST**) profiles of *Staph. aureus* strains isolated in northern Italy and compared them to their ribosomal spacer-PCR (**RS-PCR**) genotypes. They found 16 CC, the most frequent being CC8, CC97, CC398, and CC1, isolated from bovine milk and reported as livestock-associated lineages (Boss et al., 2016).

Because Staph. aureus IMI is mainly chronic and subclinical, its contagiousness is of utmost importance in determining the economic losses for the affected herd. In this work, we aimed to investigate the prevalence of Staph. aureus IMI in northern Italian dairy farms and to relate the Staph. aureus circulating genotypes (especially the presence/absence of the adlb gene) as well as some farm characteristics and milking management factors to the prevalence of IMI within the herds as a marker of contagiousness of the circulating strains.

MATERIALS AND METHODS

This analysis did not require approval by an Institutional Animal Care and Use Committee because it did not involve animals used for scientific purposes as required by Directive 2010/63/EU (European Union, 2010) [Art. 2 ... 5. This Directive shall not apply to the following:... (f) practices not likely to cause pain, suffering, distress or lasting harm equivalent to, or higher than, that caused by the introduction of a needle in accordance with good veterinary practice.].

Study Design and Herd Data Collection

Between September 2011 and August 2012 and between March 2016 and March 2017, 60 dairy cattle herds with *Staph. aureus* IMI were enrolled in our study. The average size of the herds was 102 milking cows (range: 18 to 417 cows). All farms reared Holstein Friesian cattle and were located in the Lombardy, Emilia-Romagna, or Piedmont regions in northern Italy. These herds were representative, in terms of the number of lactating cows and average milk yield per cow, of a geographical area where more than 70% of Italian bovine milk is produced.

We identified many herds known to be infected with Staph. aureus during routine diagnostic activities con-

ducted during the 3 previous months on bulk tank milk samples or individual milk samples by 2 regional public health veterinary laboratories located in northern Italy (i.e., Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna and Istituto Zooprofilattico del Piemonte, Liguria e Valle D'Aosta). We considered only the farms established free from other contagious microorganisms, such as Streptococcus agalactiae and Mycoplasma bovis. Moreover, we selected only the herds that, at the time of sampling, did not follow any specific Staph. aureus mastitis control program and did not conduct a specific sanitation program aimed to control this pathogen. Considering the resources available for our study, the first 60 farms that fulfilled the described criteria and voluntary agreed to participate to the sampling (and eventually to take place specific actions) were enrolled in our study.

At first, composite milk samples were collected cow by cow (first sampling round) from all lactating cows of the herds, and bacteriological analysis was then performed to determine the prevalence of Staph. aureus IMI (Maisano et al., 2019). Then, Staph. aureus-positive cows were resampled 1 to 3 wk later by collecting quarter milk samples to detect the infected quarters and perform molecular characterization of the isolates (second sampling round). Finally, the proportions of Staph. aureus-infected cows and the average number of infected quarters per cows were determined as indicators of strain infectivity. Specific indicators of milking management, such as teat condition and udder hygiene, were evaluated as well. These 2 parameters can be considered risk factors for *Staph. aureus* transmission and, consequently, for within-herd prevalence of IMI (Zadoks et al., 2001; Graber et al., 2009), thus potentially leading to biased conclusions regarding the contagious properties of different Staph. aureus strains. Teat condition score (**TCS**) and udder hygiene score (**UHS**) were visually evaluated for each cow during milk sampling and assigned according to Neijenhuis et al. (2001) and Schreiner and Ruegg (2002), respectively. Herd-level TCS and UHS were calculated as the arithmetic mean of individual cow TCS and individual cow UHS. The milking routine was assessed based on a specific checklist of 8 items created by the Italian National Reference Center for milk quality. The checklist is largely in accordance with the recommendations of the National Mastitis Council (NMC, 2016). The checklist was created to specifically address Italian milking practices. For each question (\mathbf{Q}) , scores from 1 to 3 were assigned (\mathbf{Q}) scores), where 1 was optimal (the goal for the farmer), 2 was acceptable (not the goal but nondetrimental), and 3 was insufficient (dangerous or not allowed). A cumulative milking routine score (MRS) was calculated for each herd as the arithmetic mean of the 8 Q scores. The management factors and the scoring system are listed in Table 1. The TCS, UHS, and Q scores were assigned during milk sampling by 4 veterinarians experienced in mastitis control and specifically trained (by both classroom training before the study and field practice with an expert tutor as a gold standard for the internal validation of the checklist) to reduce intra- and interobserver variability. Furthermore, age of the lactating cows at the time of sampling was also evaluated in the study as a possible risk factor for IMI prevalence. The age (in days) of lactating cows was obtained from the bovine registry of farms and average herd age (**HA**) was calculated. This parameter was considered a risk factor, because older cows are generally more likely to become infected and cure rates decrease with increasing age of the cow (Barkema et al., 2006).

Sample Collection and Bacteriological Analyses

Composite milk samples were collected hygienically (after foaming predipping and drying with disposable paper towels), and the subsequent quarter milk samples were collected aseptically (by thorough disinfection of teat using denatured alcohol). All samples were kept at 4°C and bacteriological assays were performed within 48 h. Milk samples were cultured using standard methods: 10 μ L of the sample was plated on esculin blood agar (EBA) and Baird Parker with rabbit plasma fibringen agar (**BP-RPF**). After incubation at 37°C for 48 h, suspected *Staph. aureus* colonies (hemolytic on EBA or displaying the typical halo on BP-RPF) were confirmed by tube coagulase test. The growth of one colony in 10 μ L of inoculated milk (100 cfu/mL) was chosen as the threshold to define a sample as positive (Dohoo et al., 2011) and a cow or quarter as infected.

Molecular Analyses

Genotyping by RS-PCR. For each herd, Staph. aureus isolates from quarter milk samples were confirmed by a specific PCR assay targeting the *nuc* gene (Cremonesi et al., 2006) and genotyped by RS-PCR. Specifically, 5 Staph. aureus isolates (if present) per herd from different positive cows were randomly selected and genotyped. In case of different cultural morphologies of colonies (i.e., pigmentation and hemolysis on EBA and type of halo on BP-RPF), up to 5 isolates per morphology were selected.

DNA was extracted from strains using the DNeasy Blood and Tissue kit (Qiagen), following the manufacturer's instructions. DNA was then stored at -20° C until use. The RS-PCR was performed according to Fournier et al. (2008), based on amplification of 16S-23S rRNA intergenic spacer region. The PCR products

Maisano et al.: ADLB GENE AND STAPHYLOCOCCUS AUREUS CONTAGIOUSNESS

3424

 Table 1. Farm characteristics and specific milking management factors included in the statistical analysis as possible risk factors in the spread of IMI by Staphylococcus aureus

Factor	Category	Description							
Q1 Hygienic level of the milking parlor	1: Optimal 2: Acceptable 3: Insufficient	Cleaning thoroughly with high-pressure hot water after each milking Cleaning with high-pressure cold water after each milking Rough cleaning with cold water							
Q2 Udder and teat preparation	1: Optimal	Foremilk examination, preparation with predipping, and accurate cleaning of the teats (no signs of dirt) and drying them with disposable material (one for each corr)							
	2: Acceptable	Preparation with good cleaning of the teats and drying teats with disposable materials (one for more than one cow)							
	3: Insufficient	Cleaning of udder or teats with water and no drying or no use of disposable materials for each cow							
Q3 Use of back-flushing	1: Optimal 2: Acceptable 3: Insufficient	Use of back-flushing system with the use of steam and disinfectants Use of back-flushing system with only hot or cold water Nonuse of back-flushing system							
Q4 Post-milking teat disinfection	1: Optimal	Use of postdipping teat disinfection with a specific film product and frequent cleaning of the curs							
r ost-miking teat disinfection	2: Acceptable	Use of postdipping teat disinfection with a specific product and occasional cleaning of the cups							
	3: Insufficient	Nonuse of postdipping teat disinfection							
Q5 Management and routine of milking procedures	1: Optimal	Correct stimulation followed by attaching the cluster within 90 s; control of the milk flow and of cluster during milking; removing the clusters, avoiding machine stripping							
	2: Acceptable	Correct stimulation followed by attaching the cluster within 90 s; irregular or no control of the milk flow and of cluster during milking but removing the clusters, avoiding machine stripping							
	3: Insufficient	No correct stimulation followed by rapid attaching of the cluster, no control of the milk flow or of cluster during milking or removing the clusters without attention to machine stripping							
Q6 Cleaning and sanitizing of milking equipment	1: Optimal	Regular cleaning and disinfection procedure program, taking water hardness in account; no residual dirt or biofilm on the inner side of the liners							
minking equipment	2: Acceptable	Regular cleaning and disinfection procedure program; no residual dirt or biofilm on the inner side of the liners							
	3: Insufficient	No coherent or absent cleaning and disinfection procedure program or residual dirt or biofilm							
Q7 Hygienic level of milkers	1: Optimal	Milkers use clean clothing, with clean waterproof apron and disposable							
Hygichie ievel of milkers	2: Acceptable	Milkers use clean clothing and waterproof apron but use plastic nondisposable gloves							
	3: Insufficient	Milkers use dirty clothing or no use of gloves							
Q8 Maintenance of milking	1: Optimal	Fully checked by a specialist at least once a year, and liner replacement ≤ 600 h of use							
equipment and liner	2: Acceptable	Fully checked by a specialist at least once a year, and liner replacement between 600 and 1 000 h of use							
	3: Insufficient	Fully checked by a specialist less than once a year or only in case of problems, or liner replacement >1,000 h of use or only replaced when damaged							
Milking routine score (MRS)	Cumulative milking	Calculated as the arithmetic mean of the 8 Q scores							
Udder hygiene score (UHS)	Average of the scores of all cows	Hygiene of udder, flanks, and legs was scored based on a 4-point scale system, from very clean (score 1) to very dirty skin (score 4; Schreiner and Ruege, 2002)							
Teat condition score (TCS)	Average of the scores of all teats	Callosity of the teat orifice was scored based on a 4-point scale system: absent callosity = 1; a smooth callous ring around the orifice = 2; rough and very rough callous rings = 3 and 4, respectively (Neijenhuis et al., 2001)							
Herd age (HA) adlb status of the herd (ADLB)	Age in days Staph. aureus circulating strain is adlb-positive	Average age of cows >21 mo Yes or no							

were analyzed using the miniaturized electrophoresis system DNA 7500 LabChip (Agilent Technologies), and genotypes were inferred from electrophoresis profile using Mahal 2.0 software, which is freely available online (https://mahal.vitech.dev/#/). Ribosomal spacer-PCR allows classification of isolates in several genotypes (**GT**) that can be grouped in clusters (**CL**). Each CL includes the genotype itself and its variants, differing in only one band in the electrophoretic analysis (Syring et al., 2012; Cosandey et al., 2016).

If all tested *Staph. aureus* isolates within a herd or most of them (i.e., 4 of the 5 isolates tested) belonged to the same RS-PCR genotype, this genotype was considered the predominant circulating strain likely responsible for IMI within the herd; in the remaining cases, the infection was considered "mixed" by different genotypes, none individually responsible for the herd problem (Table 2). The number of 5 isolates per herd is based on the previous studies by Fournier et al. (2008) and Cremonesi et al. (2015), which showed that either there is no variation among genotypes within one herd or it is very low, particularly when more than 5 isolates are involved in the IMI.

adlb-Targeted PCR. The *adlb*-targeted real-time PCR was performed on all RS-PCR genotyped isolates according to Sartori et al. (2017).

MLST Analysis. Multilocus sequence typing analysis was performed on a subset of strains, based on the results of RS-PCR. The selection was done as follows: one strain per RS-PCR genotype per herd was analyzed by MLST. Therefore, in the herds with a unique circulating genotype, only one strain was randomly selected; in herds with different genotypes, one strain per genotype was randomly selected.

In detail, the selected strains were subjected to whole-genome sequencing on the Miseq platform (Illumina) as follows: genomic libraries were prepared using Nextera XT DNA Library Preparation Kit (Illumina) and sequenced generating paired-end reads of 250 bp. Raw reads were checked for quality using FastQC (Babraham Bioinformatics, 2018). The MLST analysis was performed on raw reads through the Center for Genomic Epidemiology online platform (Center for Genomic Epidemiology, 2020), or by submitting them to PubMLST (https://pubmlst.org). The original contributions in the present study are publicly available. Illumina raw reads have been deposited in the National Center for Biotechnology Information GenBank database under the Bioproject number PRJNA897860.

Statistical Analysis

Descriptive Analysis. The 60 herds were sorted in ascending order according to their cow prevalence for Staph. aureus, and then divided in 3 groups of equal size. Group 0 (herds 1 to 20), group 1 (herds 21) to 40), and group 2 (herds 41 to 60) were considered as low, intermediate, and high cow prevalence groups, respectively. For each group, data of continuous variables (HA, UHS, TCS) were expressed as minimum and maximum, mean, median, standard deviation (SD), and standard error, and they were plotted as box plots. The overall comparison among groups and the comparisons between 2 groups were performed by single-factor ANOVA using the Kruskal-Wallis test, and by the Mann-Whitney U test, respectively. Categorical variables [adlb presence (ADLB) Q1-Q8, GT, ST, CC] were instead expressed as frequencies or minimum and maximum. For graphical representation of ADLB and Q1-Q8, the mean and standard error of the mean were calculated and plotted. Comparisons among groups were computed by exact χ^2 test. All analyses were performed using Systat 13.0 software (Systat Software Inc.).

Modeling of Staph. aureus Cow Prevalence. Quasi-binomial logistic regression was applied to model the within-herd prevalence of Staph. aureus IMI (response variable) as a function of the explanatory variables identified in the study, by using R 3.6.3 (R Core Team, 2020) with "MASS" package. A quasibinomial distribution was used for describing the error distribution to account for overdispersion. Specifically, we tested the effect on cow prevalence of the binary variable ADLB, the categorical variable predominant clonal complex (\mathbf{pCC}) , and the different continuous variables (i.e., HA, UHS, TCS), in addition to the global milking score (MRS). The MRS, defined as the mean over the variables Q1 to Q8, was introduced in the statistical model to replace the individual Q variables to avoid the problem of collinearity among various Q variables. To evaluate in the model the effect on the prevalence of the major CC observed in the population, the categorical variable pCC was introduced. In detail, to take into account only the main CCs observed in the population (and avoid estimating the effect of rare CCs using a limited amount of data), the categorical variable pCC was built by assigning to each farm its pCC under the following conditions: (1) at least 10%of the farms displayed the pCC, or (2) at least 5% of the farms displayed the pCC and the within-herd prevalence range of farms in which circulated the given pCC does not include the overall prevalence of *Staph*. *aureus* in the study population (i.e., 20.3%). The farms not fulfilling criterion (1) or (2) were assigned to the group "Other CCs." The "Other CCs" group (which represents a generic CC introduced in the farm) was used as the benchmark to evaluate the effect size of a given CC on within-farm prevalence.

									ned
$\mathrm{MRS}^{\mathbb{C}}$	$\begin{array}{c} 1.625\\ 2.1255\\ 1.375\\ 1.625\\ 2.375\\ 1.625\end{array}$	$1.375 \\ 1.625 \\ 1.875 \\ 1.75 \\ 1.5$	$2.125 \\ 1.625 \\ 1.25 \\ 1.375$	$1.25 \\ 1.375 \\ 1.5 \\ 1.5 \\ 1.5$	2.125 1.875	$\begin{array}{c} 2\\ 2\\ 1.625\\ 2.125\\ 1.875\\ 1.5\\ 1.5\\ 1.625\\ 1.625\end{array}$	1.625 2.25	$\begin{array}{c} 2.125\\ 1.875\\ 1.5\\ 1.5\\ 2.25\\ 1.75\\ 1.75\end{array}$	$1.625 \\ 1.625 \\ 2.125 \\ 1.75 \\ Continue$
UHS^{5}	1.4 2.2 1.7 2.1 2.1 2.1	$\begin{array}{c} 1.9\\ 2.0\\ 1.6\\ 2.2\end{array}$	1.3 1.5 1.9 1.6	$1.9 \\ 1.9 \\ 2.5 \\ 2.1$	$1.5 \\ 2.0$	$\begin{array}{c} 1.2\\ 1.9\\ 1.6\\ 1.9\\ 1.8\\ 1.8\\ 1.8\\ 1.8\\ 1.8\end{array}$	$1.5 \\ 1.4$	2.0 1.3 1.4 1.8 2.0 2.7	1.5 2.6 1.3 1.3
TCS^{5}	2.3 1.4 2.3 2.3 2.3	$ \begin{array}{c} 1.4 \\ 2.2 \\ 1.7 \\ 1.4 \\ 1.4 \end{array} $	$\begin{array}{c} 2.1 \\ 1.8 \\ 1.4 \\ 1.3 \end{array}$	$1.4 \\ 1.5 \\ 1.0 \\ 1.3 $	$2.0 \\ 1.2$	1.6 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	$1.6 \\ 1.4$	1.2 2.2 1.3 3 .5 1.3 3 .5 1.3 .5 1.3 .5 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	$1.6 \\ 1.4 \\ 1.5 \\ 1.5$
I HA ⁵	$\begin{array}{c} 1,413\\ 1,380\\ 1,532\\ 1,532\\ 1,477\\ 1,562\\ 1,371\\ 1,371\end{array}$	1,607 1,466 1,306 1,500 1,458	$\begin{array}{c} 1,596\\ 1,335\\ 1,461\\ 1,621\end{array}$	$\begin{array}{c} 1,392\\ 1,450\\ 1,482\\ 1,547\end{array}$	$1,590 \\ 1,944$	1,539 1,457 1,607 1,386 1,386 1,488 1,979 1,234	$1,534 \\ 1,485$	1,431 1,463 1,367 1,517 1,577 1,557	$1,489\\1,556\\1,416\\1,626$
Staph. aureus IM prevalence $(\%)^4$	0.7 0.9 1.3 1.7 2.1	2.1 3.7 4.5 8	4.4. 5.5.4.8.7 8.8.8	5.9 6.2 6.3 7.5 .3	7.5 8.3	8.9 10.2 12.1 12.7 14.8 15.1 16.7 18.4	$19.1 \\ 20.0$	21.9 23.3 23.7 24.3 26.3 26.3	26.7 27.3 28.0 28.3
<i>adlb</i> status	Negative Negative Negative Negative Negative Negative	Negative Negative Negative Negative Negative	Negative Negative Negative Negative	Negative Negative Negative Negative	Negative Negative	Negative Negative Negative Negative Negative Negative Negative Negative	Negative Negative	Negative Negative Positive Negative Negative Negative	Negative Positive Positive Positive
Predominant circulating CC	CC705 CC8 CC133 CC133 CC398 CC398 CC705	CC398 CC705 CC398 CC1 Mixed ⁶	Mixed CC705 CC97 Mixed	CC398 CC705 CC97 Mixed	CC20 Mixed	CC9 CC97 CC97 CC45 CC45 CC97 CC389 CC71 Mixed	CC398 CC9	CC20 CC9 CC3 CC3 CC37 CC97	CC97 CC8 CC97 CC8
MLST (ST-CC) ³	ST151-CC705 ST8-CC8 ST33-CC133 ST352-CC97 ST398-CC398 ST504-CC705	ST398-CC398 ST504-CC705 ST398-CC398 ST291-CC398 ST291-CC398 ST291-CC398 ST291-CC398	ST398-CC/05 ST398-CC398; ST97-CC97 ST594-CC705 ST352-CC97 ST358-CC398;	ST1380-CC479 ST380-CC398 ST504-CC705 ST52-CC97 ST952-CC97 ST1380-CC479; ST1380-CC479; ST504-CC705;	ST97-CC97 ST20-CC20 ST8-CC8; ST8-CC8;	ST1.05-CC9 ST9-CC9 ST9-CC9 Unknown-CC97 ST45-CC45 ST6881-CC97 ST389-CC389 ST71-CC71 ST71-CC71 ST71-CC71	ST398-CC398 ST9-CC398 ST9-CC9;	ST20-CC9 ST20-CC20 ST8-CC9 ST8-CC8 ST97-CC97 ST97-CC97 ST97-CC97	ST97-CC97 ST352-CC97 ST8-CC8 ST8-CC8 ST8-CC8
$\mathrm{RS-PCR}$ (no.) ²	C C S R R R C (1) C S R R (2) C (3) C (3) C (3) C (1) C (1)	$\begin{array}{c} { m S} { m (1)} { m S} { m C} { m (2)} { m S} { m (2)} { m S} { m (2)} { m B} { m (2)} { m B} { m (2)} { m (2)} { m B} { m (1)} { m ($	$ \begin{array}{c} C^{-}(1)\\ S(2);\\ C(4)\\ R(3)\\ R(3)\\ S(1); \end{array} $	$\begin{array}{c} {}^{Z} \left(1 \right) \\ {}^{Z} \left(2 \right) \\ {}^{C} \left(2 \right) \\ {}^{Z} \left(3 \right) \\ {}^{Z} \left(3 \right) \\ {}^{Z} \left(3 \right) \\ {}^{Z} \left(1 \right) \end{array}$	${f BE}\ (1)\ {f F}\ (2)\ {f B}\ (1);\ {$	$ \begin{array}{c} {}^{\rm F}_{\rm AO} \left({}^{\rm C}_{\rm 3} \right) \\ {}^{\rm AO} \left({}^{\rm AO} \left({}^{\rm 3}_{\rm 3} \right) \\ {}^{\rm Y} \left({}^{\rm 5}_{\rm 5} \right) \\ {}^{\rm Y} \left({}^{\rm 5}_{\rm 5} \right) \\ {}^{\rm F} \left({}^{\rm 5}_{\rm 5} \right) \\ {}^{\rm BN} \left({}^{\rm 2}_{\rm 5} \right) \\ {}^{\rm 2}_{\rm 5} \right) \\ {}^{\rm 2}_{\rm 5} \left({}^{\rm 2}_{\rm 5} \right) \\ {}^{\rm 2}_{\rm 5} \left({}^{\rm 2}_{\rm 5} \right) \\ {}^{\rm 2}_{\rm 5} \left({}^{\rm 2}_{\rm 5} \right) \\ {}^{\rm 2}_{\rm 5} \left({}^{\rm 2}_{\rm 5} \right) \\ {}$		$ \begin{array}{c} {}^{\rm Y}_{\rm FII} (1) \\ {\rm CJ} (5) \\ {\rm CJ} (5) \\ {\rm B} (4) \\ {\rm U} (5) \\ {\rm AX} (4); \\ {\rm AX} (4); \\ {\rm AX} (4); \end{array} $	$ \begin{array}{c} {}^{\Gamma} \left(1 \right) \\ {}^{R} \left(5 \right) \\ {}^{B} \left(5 \right) \\ {}^{C} \left(5 \right) $
Herd size	285 114 158 158 131 119 141	$\begin{array}{c} 47\\157\\267\\417\\44\end{array}$	85 105 88 52	$203 \\ 65 \\ 1127 \\ 1134$	$\begin{array}{c} 40\\24\end{array}$	$\begin{array}{c} 101 \\ 59 \\ 66 \\ 63 \\ 73 \\ 18 \\ 38 \\ 38 \end{array}$	$\frac{131}{70}$	96 38 70 82 95 20 82 95	$\begin{array}{c} 45\\ 205\\ 132\\ 166\end{array}$
Group	000000	00000	0 000	0000	0				7 7 7 1 1
Farm no.	1004100	7 8 11 11	12 13 15	16 17 18 19	20 21	$222 \\ 2222 \\ 2232 \\ 2232 \\ 2232 \\ 2322 \\ 2$	$30 \\ 31$	32 33 35 35 33 37	38 39 41

Table 2. Characteristics of the 60 analyzed herds, in ascending order of *Staphylococcus aureus* IMI prevalence¹

Journal of Dairy Science Vol. 106 No. 5, 2023

Maisano et al.: ADLB GENE AND STAPHYLOCOCCUS AUREUS CONTAGIOUSNESS

3426

MRS^{5}	1.625 2.125	1.75	1.5	1.375	1.875	2.125	1.25		1.875	1.875		2.25		2.375	2.125	1.75		2.125		1.625	1.625	1.625	ch farm.	nalvzed bv	for more from
UHS^{5}	$1.5 \\ 2.9$	1.6	1.9	1.6	2.5	1.9	2.8		1.5	1.4		2.5		1.9	1.3	1.1		1.1		1.9	2.2	1.2	lated in ea	isolates a	
TCS^{5}	$1.2 \\ 1.6$	1.4	1.3	1.4	1.3	1.2	1.8		1.1	1.9		1.2		2.2	1.4	2.7		1.9		2.2	1.4	1.3	strains iso	number of	
HA^{5}	1,405 1,502	1,426	1,677 1.502	1,317	1,448	1,716	1,543		1,539	1,587		1,856		1,513	1,513	1,454		1,645		2,589	1,605	1,951	med on the	is the tota	
Staph. aureus IMI prevalence $(\%)^4$	28.8 31.8	35.2	36.7 40.5	41.8	43.0	46.2	46.6		49.0	51.6		56.0		58.6	60.7	62.0		62.1		66.6	67.4	73.0	lecular analyses perfor	of the isolates per herd	A THE TAX AND A TAXA TAXA TAXA TAXA TAXA TAXA TAXA T
<i>adlb</i> status	Positive Negative	Negative	Positive	Negative	Positive	Positive	Positive		Positive	Positive		Positive		Positive	Positive	Positive		Positive		Negative	Positive	Positive	l as results of mc	otype. The sum	herd 19.
Predominant circulating CC	CC8 CC126	CC5	CC8 CC8 CC8 CC8 CC8 CC8 CC8 CC8 CC8 CC8	CC126	CC97	CC8	CC8		CC8	CC8		CC8		CC97	CC8	CC8		CC8		CC126	CC8	CC8	ctors are listed, as wel	the corresponding gen	notypes by RS-PCR in
MLST (ST-CC) ³	ST8-CC8 ST126-CC126; ST126-CC126;	ST6837-CC5	ST8-CC8 ST8-CC8	ST126-CC126	ST97-CC97	ST8-CC8	ST8-CC8; cTre CC8;	ST8-CC8	ST8-CC8	ST8-CC8;	ST8-CC8	ST8-CC8;	ST8-CC8	ST97-CC97	ST8-CC8	ST8-CC8;	ST8-CC8	ST8-CC8;	ST1-CC1	ST126-CC126	ST8-CC8	ST8-CC8	ws and some IMI risk fa	· of isolates belonging to	nple, 10 isolates were ge
$\mathrm{RS-PCR} (\mathrm{no.})^2$	${f B} \ (5) \\ {f BM} \ (5); \\ {f BT} \ (1) \end{cases}$	K (5)	B (5) B (5)	$\overline{S}^{II}(5)$	$\mathrm{R}^{\mathrm{VI}^{`}(5)}$	B(4)	B^{III} (5); $D_{(1)}$.	B ^I (1);	B (5)	B(5);	$B^{I}(1)$	$B_{(5)}$	$\mathbf{B}^{\mathrm{III}}$ (2)	\mathbf{R}^{VI} (5)	B(5)	$B_{(5)}$;	$\mathbf{B}^{\mathrm{I}}\left(1\right)$	B(5);	AQ(1)	$S^{II}(5)$	B(5)	B (5)	us-infected cc	s the number	erd. For exar
Herd size	$\begin{array}{c} 111\\ 107\end{array}$	122	30 37	239	100	78	73		66	62		25		87	56	142		66		81	49	37	Staph. aurei	eses indicate	CR in the h
Group	77	5 2	2 0	5	2	2	2		2	2		2		2	2	2		2		2	2	2	nce of both	r in parenthe	acer (RS)-P
Farm no.	42 43	44	45 46	47	48	49	50		51	52		53		54	55	56		57		58	59	60	¹ The prevale	² The numbe	ribosomal sr

Table 2 (Continued). Characteristics of the 60 analyzed herds, in ascending order of *Staphylococcus aureus* IMI prevalence¹

⁴IMI prevalence is expressed as a proportion of positive cows. ³Multilocus sequence typing (sequence type-clonal complex).

⁵HA = age of cows; TCS = teat condition score; UHS = udder hygiene score; MRS = milking routine score. See Table 1 for specifications. ⁶Mixed = within the same herd different genotypes were identified, of which none was predominant.

3427

The response variable was modeled for dependence on multiple explanatory variables by using a forward stepwise selection procedure (Venables and Ripley, 2002) with a drop-in-deviance test statistic based on quasi-likelihood inference (Roback and Legler, 2021) to define the model providing the best prediction. The drop-in-deviance test comparing Model 1 (with p parameters) and Model 2 (with q parameters, and q < p) was performed using the statistic

$$F = \frac{1}{\hat{\phi}} \times \frac{D_2 - D_1}{p - q}$$

where $\hat{\phi}$ represents the overdispersion parameter for the variance, D_1 and D_2 represent the residual deviance for Model 1 and Model 2, respectively, and p - q represents the difference in the number of parameters between the models (Roback and Legler, 2021). Then, the test statistic was compared with an *F*-distribution with p - q and n - p degrees of freedom (where *n* represents the sample size). We used the odds ratio (**OR**) as effect size statistics in quasi-binomial logistic regressions. All data included in the statistical analyses are listed in Table 2.

RESULTS

Sample Collection and Bacteriological Analyses

During the first sampling round, a total of 6,079 composite milk samples from as many cows were collected from the 60 selected herds. Overall, 1,233 cows were *Staph. aureus*-positive, and within-herd prevalence ranged from 0.7 to 73%.

Because some cows were slaughtered or dried off between the first and second samplings (an interval of 1 to 3 wk), 1,228 positive cows were resampled during the second round, collecting a total of 4,912 sterile quarter milk samples. All cows resampled were positive for at least one quarter. The proportion of infected quarters per cow within a herd ranged from 1 to 3 in the different herds (Table 2). Teat condition score and UHS ranged from 1.0 to 2.8 and from 1.1 to 2.9, respectively; HA ranged from 1,234 to 2,589 d (Table 2). The results referring to the 8 Q scores of the milking routine check list are shown in Supplemental Table S1 (https://data .mendeley.com/datasets/3z2vnckwg3/1; Romanò et al., 2022); MRS are reported in Table 2.

Molecular Analyses

Genotyping by RS-PCR and MLST. Ribosomal spacer-PCR was performed on 262 *Staph. aureus* isolates from the 60 investigated herds. The number of

genotyped isolates per herd ranged from 1 to 10, depending on the number of isolates obtained and on their morphological characteristics, as described in Materials and Methods. A predominant genotype was detected in 54 herds: it was a unique genotype in 46 herds, whereas in 8 herds it was predominant (i.e., 4 of the 5 strains tested belonged to the same RS-PCR genotype). In the 6 remaining herds, up to 4 different genotypes were isolated, of which none was predominant ("mixed" isolates; Table 2).

Seventy-seven out of these 262 strains were also analyzed by MLST; 19 different ST, grouped into 15 CC, were identified, including 2 previously unknown profiles. The results are shown in Table 3. The most frequent MLST profiles were CC8-ST8 (n = 23; 30%), CC97-ST97 (n = 11; 14%), CC398-ST398 (n = 7; 9%), and CC705-ST504 (n = 6; 8%). When a predominant genotype circulated within a herd (n = 54), it was CC8 in 17 herds (31%), CC97 in 12 (22%), CC705 and 1%CC398 in 5 (9%), and CC20, CC9, and CC126 in 3 (6%)herds. In the 6 remaining herds with a predominant genotype, we isolated a CC that was not isolated in any of the other analyzed herds (Table 2). Comparing the results of MLST and RS-PCR, all CC8-ST8, CC398-ST398, and CC705 Staph. aureus strains belonged to CLB, GTS (RS-PCR genotype S), and CLC (RS-PCR genotypic cluster C), respectively.

adlb-Targeted PCR. The *adlb*-targeted PCR was performed on the same 262 isolates that underwent RS-PCR. Eighty-five of 87 CLB strains were *adlb*-positive (75 GTB, 7 GTB^{III}, and 3 GTB^I), whereas *adlb* was detected in only 15 of the non-CLB circulating strains (10 GTR^{VI} and 5 GTBQ^I; Table 2). Among the 77 strains analyzed with MLST, the *adlb* gene was present in 22 of 23 CC8 (96%) and 3 of 17 CC97 (18%). The remaining CCs did not harbor the gene.

Nineteen herds were considered *adlb*-positive because the predominant strain carried this gene. Conversely, 41 herds were identified as *adlb*-negative, because none of the isolated strains carried the gene. Our results show that IMI prevalence was always considerably higher in *adlb*-positive herds compared with *adlb*-negative herds. The relationship between prevalence of *Staph. aureus* IMI and circulation of *adlb*-positive strains within the herd is displayed in Figure 1 and Figure 2. No *adlb*positive strain was isolated in herds with an IMI prevalence <23%, and the effect of the carriage of *adlb* gene on IMI prevalence is represented in Figures 1, 2, and 3.

Statistical Analyses

Descriptive Analysis. An association was observed among the 3 groups of prevalence (group 0/low preva-

Table 3. Distribution of clonal complexes (CC) and sequence type (ST), and their relation with ribosomal spacer (RS)-PCR genotypes and the presence of *adlb*, of the 77 strains analyzed with multilocus sequence typing (MLST)

No. of strains	CC^1	ST	$\begin{array}{c} \mathrm{ST} \\ (\% \ \mathrm{of} \ \mathrm{total}) \end{array}$	Genotype (GT)	adlb-positive strains
23	CC8	ST8 (23)	30	$B(18), B^{I}(3), B^{III}(2)$	$B(17), B^{I}(3), B^{III}(2)$
17	CC97	ST97 (11)	14	$AO(3), R^{VI}(2), BE(2), AX(1), BI(1), BQ^{I}(1), I^{I}$	$R^{VI}(2), BQ^{I}(1)$
				(1)	
		ST352(4)	5	$\mathbf{R}(4)$	
		ST6881(1)	1	$I^{I}(1)$	
		Unknown (1)	1	Z(1)	
8	CC398	ST398 (7)	9	$S_{(6)}, BA_{(1)}$	
		ST291(1)	1	$B^{III}(1)$	
7	CC705	ST504(6)	8	$C(5), C^{II}(1)$	
		ST151(1)	1	C (1)	
4	CC9	ST9(4)	5	$CJ(1), F(1), F^{III}(1), Y(1)$	
4	CC126	ST126(4)	5	$S_{}^{II}(2), BM(1), BT(1)$	
3	CC20	ST20(3)	4	$F^{III}(1), F(1), U(1)$	
2	CC1	ST1(2)	3	AQ(1), BJ(1)	
2	CC133	ST133(2)	3	$R^{1}(1), R^{111}(1)$	
2	CC479	ST1380(2)	3	Z(2)	
1	CC5	ST6837(1)	1	K(1)	
1	CC30	ST30 (1)	1	$\mathbf{R}^{\mathrm{I}}(1)$	
1	CC45	ST45(1)	1	Y (1)	
1	CC71	ST71(1)	1	BN(1)	
1	CC389	ST389 (1)	1	F (1)	

¹All strains belonging to the same CC were isolated in different herds.

lence; group 1/intermediate prevalence; group 2/high prevalence) and GT, ST, and CC (P < 0.001). In particular, all CC705/GTC strains and most of the herds with various GTs ("mixed") were observed in group 0. Staphylococcus aureus belonging to CC398/ST398, and CC97/ST352 were the most prominent in group 0 as well. In contrast, less variability was observed in group 2: Staph. aureus strains mainly belonged to CC8/ST8/CLB, and CC126/ST126/GTS^{II} strains were isolated exclusively in this group (Table 2).

The presence of *Staph. aureus* strains carrying the *adlb* gene was highly group-dependent (P < 0.001). In fact, they were never observed in group 0, whereas they were found in 3 herds of group 1 (15%) and in 16 herds (80%) of group 2. Based on the exact χ^2 test, the presence of at least one *Staph. aureus* carrying the *adlb* gene in a herd was highly dependent on the GT of the strain itself (P < 0.001). In fact, only *Staph. aureus* strains belonging to CC8/ST8/CLB and CC97/ST97 harbored the gene. Among CC97/ST97 strains, *adlb* was found only in strains belonging to GTR^{VI} and GTBQ^I.

As for HA, medians did not differ among groups (P = 0.105). Groups 1 and 2 showed increased standard deviation, as a result of one herd in each group having considerably older cows. The UHS (P = 0.756) and TCS (P = 0.759) values were very similar among the groups (Table 2; Figure 4A; Supplemental Table S2; https://data.mendeley.com/datasets/3z2vnckwg3/1; Romanò et al., 2022).

For some of the Q variables (Q1, Q2, Q3, Q4, Q8), all 3 defined levels (optimal, acceptable, and insufficient)

were observed, whereas insufficient values were never detected for the remainder (Q5, Q6, Q7). A significant association was observed between Q7 and the group variable (P = 0.032): the hygienic level of the milkers worsened as the prevalence of *Staph. aureus* IMI increased. As for all remaining Q variables, no significant association among groups was observed.

Modeling of Staph. aureus Cow Prevalence. The statistical analysis of factors affecting Staph. aureus within-herd prevalence, performed through quasibinomial logistic regression, revealed that the pCC present in the farm and ADLB (the presence/absence) of the *adlb* gene in the circulating strains) were the only explanatory variables included in the best model obtained from the forward stepwise selection (see Table 4). In Supplemental Table S3 (https://data.mendeley .com/datasets/3z2vnckwg3/1; Romanò et al., 2022), we show the effect size (expressed as OR) associated with the parameters estimated in the 1-variable and 2-variable best models selected through the model selection process. The model selection process identified the pCC as the main explanatory variable in explaining the observed difference in *Staph. aureus* within-herd prevalence (see the 1-variable best model in Table 4 and Supplemental Table S2; https://data.mendeley .com/datasets/3z2vnckwg3/1). Specifically, the 1-variable best model predicted a significantly different OR with respect to the benchmark for 4 of 5 of the main CC observed in the study (i.e., CC8, CC97, CC705, and CC126; see Supplemental Table S2). However, the 2-variable best model (which provided the best fit in

Figure 1. Distribution of *Staphylococcus aureus* IMI prevalence in the 60 farms in relation to their *adlb* status. The vertical lines show the 3 groups of 20 farms, arbitrarily defined as characterized by low (group 0), intermediate (group 1), and high (group 2) prevalence for statistical analysis. Gray (-) = adlb-negative farms (gray); black (+) = adlb-positive farms.

Figure 2. Staphylococcus aureus IMI prevalence in the 60 herds based on their *adlb* status. Gray = *adlb*-negative farms; black = *adlb*-positive farms. The central line is the median and the whiskers are 95% CI.

Figure 3. Distribution of *Staphylococcus aureus* IMI prevalence in the 60 farms in relation to the clonal complex and *adlb* status of the predominant circulating strains. Gray = adlb-negative farms; black = adlb-positive farms. Lines indicate the median.

Figure 4. Graphical representation of the mean and SEM describing the relationships between different groups of prevalence (0 = low, 1 = intermediate, 2 = high) and the studied variables. (A) Continuous variables: herd age (HA), teat condition score (TCS), and udder hygiene score (UHS); (B) categorical variables: *adlb* status (ADLB) and questions (Q) 1 to 8 (Q1–Q8). A: The box is the area between the 25th and 75th percentiles, the line is the median, the whiskers are the limits (minimum and maximum), and the asterisks are outliers. The circles are the extreme outliers.

Table 4. Forward stepwise model selection for within-herd prevalence (Herd Prev) obtained from quasibinomial regression¹

Response variable	v-variable best model ²	ϕ	Residual deviance	k	<i>P</i> -value
Herd Prev	$\sim 1^{3}$	14.8	961.6	1	
	$\sim pCC$	6.9	401.2	6	9.5×10^{-10}
	$\sim pCC + ADLB$	5.4	287.1	7	2.8×10^{-5}
	$\sim pCC + ADLB + HA$	5.4	276.4	8	0.16

¹Models were compared using drop-in-deviance tests. The best models for v explanatory variables are shown, with the dispersion parameter (ϕ), the residual deviance, the number of parameters (k), and the P-value of the comparison with the v - 1 variable best model (P-tests: <0.05 as the inclusion and exclusion criteria). ²pCC = predominant clonal complex; ADLB = adlb-positive strain; HA = herd age. Other explanatory variables included in the full model but not selected in the v-variable best models were udder hygiene score, teat condition score, and milk routine score.

³Null model.

the selection process) predicted a significantly higher Staph. aureus prevalence in farms where the pCC was CC126 (OR = 3.85, 95% CI: 2.26–6.54), and a significantly lower Staph. aureus prevalence in farms where the pCC was CC705 (OR = 0.21, 95% CI: 0.07–0.66) with respect to the benchmark. Instead, it did not predict significant differences in Staph. aureus prevalence with respect to the benchmark where the pCC was CC8 or CC97. Additionally, the 2-variable best model predicted a significantly higher Staph. aureus prevalence the adlb gene compared with farms in which Staph. aureus strains were adlb-negative (OR = 4.06, 95% CI: 2.16–7.63).

DISCUSSION

Because Staph. aureus IMI is mainly chronic and subclinical, the contagiousness of this pathogen is of utmost importance in determining economic losses for the affected dairy farms. We investigated Staph. aureus IMI prevalence in 60 dairy farms located in northern Italy, with known Staph. aureus IMI and without other contagious microorganisms. Our study showed very variable prevalence of *Staph. aureus* IMI in the different herds, ranging from 0.7 to 73%. Of these, about one-third had a prevalence <8% and one-third >28%. and in 15% of the herds, prevalence was >50%. This is in line with previous Italian data (Luini et al., 2015; Magro et al., 2017) and confirms that very different situations can be found depending on the single farm considered. Indeed, in certain herds, Staph. aureus IMI are reported to remain confined to a few cows, whereas in many others, the infection appears to be widespread with up to 70 to 80% of cows infected, leading to serious economic losses and management problems (Cremonesi et al., 2015; Luini et al., 2015; Cosandey et al., 2016; Gazzola et al., 2020).

Journal of Dairy Science Vol. 106 No. 5, 2023

Our results are consistent with previous studies about the circulation of one predominant genotype within a farm; indeed, in most cases, when we isolated different genotypes within the same herd, only one of them was predominant (Joo et al., 2001; Capurro et al., 2010; Leuenberger et al., 2019). Interestingly, in herds with high prevalence of *Staph. aureus* IMI, we observed few genotypes, mostly CC8, whereas most of the different genotypes were isolated in the remaining herds.

To date, no study has clearly identified a single marker or combination of markers capable of predicting *Staph*. aureus contagiousness within a herd and that is universally valid in all geographical and farming conditions. In our study, we investigated the relationship between the prevalence of Staph. aureus IMI and environmental and management factors generally considered predisposing to IMI from contagious pathogens, such as the age of animals and the average number of milking cows (Cicconi-Hogan et al., 2013). In addition, we considered other factors related to hygiene and quality of milking, including UHS and TCS, as well as those strictly related to the milking routine, such as the hygienic level of the milking parlor and the milkers, udder preparation, the quality of pre- and postdipping, the use of back-flushing, the routine of milking procedure, and the cleaning and maintenance of milking equipment. Previously, Dufour et al. (2012) investigated manageable risk factors for Staph. aureus IMI incidence and prevalence, reporting that they seemed to be mostly related to milking procedures in herds where postmilking teat disinfection and blanket dry-cow therapy had already been implemented. In particular, wearing gloves during milking, adequate teat-end condition, and use of premilking teat disinfection were associated with lower IMI incidence and prevalence, highlighting the importance of good milking practices (Dufour et al., 2012). The association between TCS and mastitis in dairy cows has been the subject of a systematic review, which showed that only severe teat condition was associated with the incidence or prevalence of *Staph. aureus* IMI (Pantoja et al., 2020). To avoid possible bias, we enrolled herds that did not practice segregation or culling of infected cows and that did not implement a specific dry-cow therapy, even if these remain best practices for the control and eradication of *Staph. aureus* (NMC, 2016).

Our descriptive analyses did not identify a significant association between most of the considered variables and the prevalence of *Staph. aureus* IMI, except for the udder and teat preparation for milking (Q7). In contrast, at least for Italian farms, some of the Q variables could not be individually used as predictors, because they were highly associated with each other as they reflect the farmer's attitude. For example, we noted that if the farmers performed a good milking procedure (Q5), they also wanted to maintain a clean milking parlor (Q1); if the personal hygienic level of the farmers was high (Q7), udder and teat preparation for milking (Q7) was also good, resulting in a general cleanliness; if the farmers cared for cleaning the milking equipment (Q6), they also maintained it in good condition (Q8)and performed good postmilking teat disinfection (Q4). Considering the global milking variable, that is, the combination of all Q variables, it had no or only a minimal impact on *Staph. aureus* cow prevalence within a herd. The HA had an effect, as reported by Barkema et al. (2006), but this small effect was not significant in the best model analysis. Our study showed a strong association between the prevalence of Staph. aureus IMI and the presence of the *adlb* gene (P < 0.001) in both the univariable and multivariable models. In the multivariable analysis, the model providing the best prediction included pCC and ADLB as the only significant predictors. Interestingly, the difference in OR obtained in the 1-variable and 2-variable models for CC8 and CC97 (the only CCs where *adlb* was detected) suggests that it is the presence of the *adlb* gene, not the circulation of these CCs in a herd per se, that leads to higher Staph. aureus within-herd prevalence. The within-herd prevalence of *Staph. aureus* IMI was always higher than the population average in farms in which CC8 or CC97 were the predominant CCs when they carried the *adlb* gene, whereas it was lower than the population average when the predominant CC8 and CC97 did not carry the gene.

These results demonstrate that the genetic properties of the *Staph. aureus* circulating within a herd may affect IMI prevalence and play a crucial role in the resultant herd problem. In particular, our findings show that the presence of a strain harboring *adlb* may be associated with the within-herd prevalence of IMI. As for herds with intermediate or high prevalence of IMI

Journal of Dairy Science Vol. 106 No. 5, 2023

caused by *adlb*-negative *Staph. aureus*, such as CC126, on top of the standard factors HA, UHS, TCS, and MRS, other genetic factors may explain the increased cow prevalence. Other genotypes, such as CC705, seem to be associated with low within-herd prevalence of IMI and to behave similarly to environmental mastitis pathogens (Leuenberger et al., 2019). Interestingly, our results also suggest that, in spite of different environmental influences, intermediately contagious subtypes may occur as well, as in the case of CC97. They may have specific genetic properties that differ from both noncontagious and highly contagious types. However, as this was a cross-sectional study, we cannot exclude the possibility that cow prevalence in group 1 would have increased over time, reaching prevalence typically observed in group 2. Additional genomic and field studies are required to support the hypothesis of intermediate contagiousness.

These findings, together with our previous observations (Fournier et al., 2008; Graber et al., 2009; Cremonesi et al., 2015; Luini et al., 2015), indicate that bovine *Staph. aureus* per se is not contagious, but that it acquires this property most likely by horizontal transfer of appropriate genetic elements. In fact, our bioinformatics studies demonstrate that the *adlb* gene is part of a staphylococcal cassette chromosome that is known to be transferable (Malachowa and DeLeo, 2010). Based on these observations, the transfer of the *adlb* gene among different CCs is theoretically probable. Indeed, the present study showed that such a transfer can happen because the *adlb* gene was observed in both CC8 and CC97. However, further analyses are required to confirm and fully describe this gene transfer.

This study has potential limitations. Because we conducted a cross-sectional study, we cannot rigorously define the contagiousness of the strains circulating in the farms, which would require longitudinal studies that measure the incidence of infection over time. Considering the available resources and the need for farmers' consent, we preferred to conduct a cross-sectional study enrolling a greater number of herds (i.e., 60), rather than a longitudinal one on a restricted number of herds. Above all, this allowed us to collect a greater number of *Staph. aureus* isolates from different farms for the molecular analyses, with a cost-benefit ratio favorable to the informativeness of the study.

The second limitation concerns the checklist of 8 questions: although it is only internally validated, it is based on the experience of the Italian National Reference Center for milk quality to specifically address Italian milking practices, and it is largely inspired by the National Mastitis Council's Recommended Mastitis Control Program.

CONCLUSIONS

Our study showed the crucial role of the genetic properties of Staph. aureus, especially the adlb gene, in determining the prevalence of IMI within a herd. Environmental and management factors, which have long been considered predisposing to the spread of contagious mastitis (i.e., caused by Strep. agalactiae, Mycoplasma bovis, or Staph. aureus), may be less relevant if the disease is caused by a *Staph. aureus adlb*-positive strain. For these reasons, use of a molecular test such as *adlb*-targeted PCR in the diagnostic routine is of paramount importance. However, without a specific molecular characterization of the circulating Staph. aureus, hygienic and management measures for prevention of contagious mastitis should not be neglected, because they play a fundamental role in *Staph. aureus* mastitis control and eradication programs. Longitudinal studies may be useful to confirm the role of *adlb* in the mechanisms of contagiousness; further analyses using whole-genome sequencing could highlight other genes involved in the high prevalence of Staph. aureus IMI caused by *adlb*-negative strains, such as CC126.

ACKNOWLEDGMENTS

This work was funded by the Italian Ministry of Health (Rome), Research Project IZSLER 2014/11 "Epidemiology of Staphylococcus aureus methicillin-resistant (MRSA) and *Staphylococcus aureus* methicillinsusceptible (MSSA) in dairy herds and dairy products." The authors thank Rosangela Garlappi (Lodi, Italy), Giorgio Oldani (Milano, Italy), Carla Cattaneo (Como, Italy), Giandomenico Ferrara (Brescia, Italy), Chiara Spelta (Pavia, Italy), and Giorgia Riuzzi (Brescia, Italy) for the very valuable work done in the field for the sampling and collection of the herds data. The authors also thank Francesca Pozzi and Antonia Riboni (Istituto Zooprofilattico della Lombardia e dell'Emilia Romagna, Lody, Italy) for the valuable technical assistance in bacteriological and PCR analyses. The authors have not stated any conflicts of interest.

REFERENCES

- Babraham Bioinformatics. 2018. FastQC. Accessed Jun. 8, 2018. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
- Barkema, H. W., Y. H. Schukken, and R. N. Zadoks. 2006. Invited review: The role of cow, pathogen, and treatment regimen in the therapeutic success of bovine *Staphylococcus aureus* mastitis. J. Dairy Sci. 89:1877–1895. https://doi.org/10.3168/jds.S0022 -0302(06)72256-1.
- Boss, R., A. Cosandey, M. Luini, K. Artursson, M. Bardiau, F. Breitenwieser, E. Hehenberger, T. Lam, M. Mansfeld, A. Michel, G. Mösslacher, J. Naskova, S. Nelson, O. Podpečan, A. Raemy, E. Ryan, O. Salat, P. Zangerl, A. Steiner, and H. U. Graber. 2016.

Bovine *Staphylococcus aureus*: Subtyping, evolution, and zoonotic transfer. J. Dairy Sci. 99:515–528. https://doi.org/10.3168/jds .2015-9589.

- Capurro, A., A. Aspán, H. Ericsson Unnerstad, K. Persson Waller, and K. Artursson. 2010. Identification of potential sources of *Staphylococcus aureus* in herds with mastitis problems. J. Dairy Sci. 93:180–191. https://doi.org/10.3168/jds.2009-2471.
- Center for Genomic Epidemiology. 2020. MLST 2.0. Accessed Aug. 31, 2020. https://cge.food.dtu.dk/services/MLST/.
- Cicconi-Hogan, K. M., M. Gamroth, R. Richert, P. L. Ruegg, K. E. Stiglbauer, and Y. H. Schukken. 2013. Risk factors associated with bulk tank standard plate count, bulk tank coliform count, and the presence of *Staphylococcus aureus* on organic and conventional dairy farms in the United States. J. Dairy Sci. 96:7578–7590. https://doi.org/10.3168/jds.2012-6505.
- Cosandey, A., R. Boss, M. Luini, K. Artursson, M. Bardiau, F. Breitenwieser, E. Hehenberger, T. H. Lam, M. Mansfeld, A. Michel, G. Mösslacher, J. Naskova, S. Nelson, O. Podpečan, A. Raemy, E. Ryan, O. Salat, P. Zangerl, A. Steiner, and H. U. Graber. 2016. *Staphylococcus aureus* genotype B and other genotypes isolated from cow milk in European countries. J. Dairy Sci. 99:529–540. https://doi.org/10.3168/jds.2015-9587.
- Cremonesi, P., B. Castiglioni, G. Malferrari, I. Biunno, C. Vimercati, P. Moroni, S. Morandi, and M. Luzzana. 2006. Technical note: Improved method for rapid DNA extraction of mastitis pathogens directly from milk. J. Dairy Sci. 89:163–169. https://doi.org/10 .3168/jds.S0022-0302(06)72080-X.
- Cremonesi, P., F. Pozzi, M. Raschetti, G. Bignoli, E. Capra, H. U. Graber, F. Vezzoli, R. Piccinini, B. Bertasi, S. Biffani, B. Castiglioni, and M. Luini. 2015. Genomic characteristics of *Staphylococ*cus aureus strains associated with high within-herd prevalence of intramammary infections in dairy cows. J. Dairy Sci. 98:6828– 6838. https://doi.org/10.3168/jds.2014-9074.
- Cvetnić, L., M. Samardžija, S. Duvnjak, B. Habrun, M. Cvetnić, V. Jaki Tkalec, D. Đuričić, and M. Benić. 2021. Multi locus sequence typing and spa typing of Staphylococcus aureus isolated from the milk of cows with subclinical mastitis in Croatia. Microorganisms 9:725. https://doi.org/10.3390/microorganisms9040725.
- Dohoo, I. R., J. Smith, S. Andersen, D. F. Kelton, and S. Godden. 2011. Diagnosing intramammary infections: Evaluation of definitions based on a single milk sample. J. Dairy Sci. 94:250–261. https://doi.org/10.3168/jds.2010-3559.
- Dufour, S., I. R. Dohoo, H. W. Barkema, L. Descôteaux, T. J. Devries, K. K. Reyher, J.-P. Roy, and D. T. Scholl. 2012. Manageable risk factors associated with the lactational incidence, elimination, and prevalence of *Staphylococcus aureus* intramammary infections in dairy cows. J. Dairy Sci. 95:1283–1300. https://doi.org/10.3168/ jds.2011-4711.
- European Union. 2010. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Off. J. Eur. Union L 276/35.
- Exel, C. E., T. Halasa, G. Koop, W. Steeneveld, T. J. G. M. Lam, L. Benedictus, and M. Gussmann. 2022. A stochastic modelling approach to determine the effect of diverse *Staphylococcus aureus* strains on the economic and epidemiological outcomes of mastitis intervention strategies in dairy cattle. Prev. Vet. Med. 199:105566. https://doi.org/10.1016/j.prevetmed.2021.105566.
- Fournier, C., P. Kuhnert, J. Frey, R. Miserez, M. Kirchhofer, T. Kaufmann, A. Steiner, and H. U. Graber. 2008. Bovine *Staphylococcus aureus*: Association of virulence genes, genotypes and clinical outcome. Res. Vet. Sci. 85:439–448. https://doi.org/10.1016/j.rvsc.2008.01.010.
- Gazzola, A., A. M. Maisano, V. Bianchini, F. Vezzoli, A. Romanò, H. U. Graber, P. Cremonesi, G. Zanardi, V. Cappa, and M. Luini. 2020. Short communication: Characterization of *Staphylococcus aureus* from bulk tank milk of dairy cattle in Lombardy (northern Italy). J. Dairy Sci. 103:2685–2692. https://doi.org/10.3168/jds .2019-17181.
- Graber, H. U., J. Naskova, E. Studer, T. Kaufmann, M. Kirchhofer, M. Brechbühl, W. Schaeren, A. Steiner, and C. Fournier. 2009. Mastitis-related subtypes of bovine *Staphylococcus aureus* are charac-

terized by different clinical properties. J. Dairy Sci. 92:1442–1451. https://doi.org/10.3168/jds.2008-1430.

- Hoekstra, J., A. L. Zomer, V. P. M. G. Rutten, L. Benedictus, A. Stegeman, and M. P. Spaninks. 2020. Genomic analysis of European bovine *Staphylococcus aureus* from clinical versus subclinical mastitis. Sci. Rep. 10:18172. https://doi.org/10.1038/s41598-020 -75179-2.
- Hogeveen, H., O. Huijps, and T. J. G. M. Lam. 2011. Economic aspects of mastitis: new developments. N. Z. Vet. J. 59:16–23. https: //doi.org/10.1080/00480169.2011.547165.
- Joo, Y. S., L. K. Fox, W. C. Davis, G. A. Bohach, and Y. H. Park. 2001. Staphylococcus aureus associated with mammary gland of cows: Genotyping to distinguish different strains among herds. Vet. Microbiol. 80:131–138. https://doi.org/10.1016/S0378 -1135(00)00381-3.
- Leuenberger, A., C. Sartori, R. Boss, G. Resch, F. Oechslin, A. Steiner, P. Moreillon, and H. U. Graber. 2019. Genotypes of *Staphylococcus aureus*: On-farm epidemiology and the consequences for prevention of intramammary infections. J. Dairy Sci. 102:3295–3309. https:// doi.org/10.3168/jds.2018-15181.
- Luini, M., P. Cremonesi, G. Magro, V. Bianchini, G. Minozzi, B. Castiglioni, and R. Piccinini. 2015. Methicillin-resistant *Staphylococ*cus aureus (MRSA) is associated with low within-herd prevalence of intra-mammary infections in dairy cows: Genotyping of isolates. Vet. Microbiol. 178:270–274. https://doi.org/10.1016/j.vetmic .2015.05.010.
- Magro, G., S. Biffani, G. Minozzi, R. Ehricht, S. Monecke, and M. Luini. 2017. Virulence genes of *S. aureus* from dairy cow mastitis and contagiousness risk. Toxins (Basel) 9:195. https://doi.org/10 .3390/toxins9060195.
- Maisano, A. M., M. Luini, V. Lorenzi, L. Bolzoni, A. Romanò, C. Spelta, A. Angelucci, F. Fusi, G. Ferrara, F. Vezzoli, and L. Bertocchi. 2019. Diagnostic value of composite milk sample vs single quarter milk sample for the detection of *Staphylococcus aureus* intra-mammary infections in cattle. Prev. Vet. Med. 167:80–84. https://doi.org/10.1016/j.prevetmed.2019.03.026.
- Malachowa, N., and F. R. DeLeo. 2010. Mobile genetic elements of Staphylococcus aureus. Cell. Mol. Life Sci. 67:3057–3071. https:// doi.org/10.1007/s00018-010-0389-4.
- Monistero, V., H. U. Graber, C. Pollera, P. Cremonesi, B. Castiglioni, and E. Bottini. 2018. *Staphylococcus aureus* isolates from bovine mastitis in eight countries: Genotypes, detection of genes encoding different toxins and other virulence genes. Toxins (Basel) 10:247. https://doi.org/10.3390/toxins10060247.
- Neijenhuis, F., H. W. Barkema, H. Hogeveen, and J. P. T. M. Noordhuizen. 2001. Relationship between teat-end callosity and occurrence of clinical mastitis. J. Dairy Sci. 84:2664–2672. https://doi .org/10.3168/jds.S0022-0302(01)74720-0.
- NMC (National Mastitis Council). 2016. Recommended Mastitis Control Program. Accessed Sep. 15, 2020. http://www.nmconline.org/

wp-content/uploads/2016/08/RECOMMENDED-MASTITIS -CONTROL-PROGRAM-International.pdf.

- Pantoja, J. C. F., L. B. N. Correia, R. S. Rossi, and G. S. Latosinski. 2020. Association between teat-end hyperkeratosis and mastitis in dairy cows: A systematic review. J. Dairy Sci. 103:1843–1855. https://doi.org/10.3168/jds.2019-16811.
- Pérez, V. K. C., G. M. D. Costa, A. S. Guimarães, M. B. Heinemann, A. P. Lage, and E. M. S. Dorneles. 2020. Relationship between virulence factors and antimicrobial resistance in *Staphylococcus aureus* from bovine mastitis. J. Glob. Antimicrob. Resist. 22:792– 802. https://doi.org/10.1016/j.jgar.2020.06.010.
- R Core Team. 2020. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.
- Roback, P., and J. Legler. 2021. Beyond Multiple Linear Regression. Applied Generalized Linear Models and Multilevel Models in R. Chapman and Hall/CRC.
- Romanò, A., A. M. Maisano, M. Luini, A. Gazzola, L. Sala, F. Vezzoli, L. Bertocchi, V. Lorenzi, P. Cremonesi, B. Castiglioni, S. Bergagna, A. Romano, E. Scaltriti, L. Bolzoni, I. Ivanovic, and H. U. Graber. 2022. *Staphylococcus aureus* adlb gene is associated with high intramammary infection prevalence in dairy herds of northern Italy: A cross-sectional study. Mendeley Data, V1. https://data .mendeley.com/datasets/3z2vnckwg3/1.
- Sartori, C., R. Boss, M. Bodmer, A. Leuenberger, I. Ivanovic, and H. U. Graber. 2018. Sanitation of *Staphylococcus aureus* genotype B-positive dairy herds: A field study. J. Dairy Sci. 101:6897–6914. https://doi.org/10.3168/jds.2017-13937.
- Sartori, C., R. Boss, I. Ivanovic, and H. U. Graber. 2017. Development of a new real-time quantitative PCR assay for the detection of *Staphylococcus aureus* genotype B in cow milk, targeting the new gene *adlb*. J. Dairy Sci. 100:7834–7845. https://doi.org/10.3168/ jds.2017-12820.
- Schreiner, D. A., and P. L. Ruegg. 2002. Effects of tail docking on milk quality and cow cleanliness. J. Dairy Sci. 85:2503–2511.
- Syring, C., R. Boss, M. Reist, M. Bodmer, J. Hummerjohann, P. Gehrig, and H. U. Graber. 2012. Bovine mastitis: The diagnostic properties of a PCR-based assay to monitor the *Staphylococcus aureus* genotype B status of a herd, using bulk tank milk. J. Dairy Sci. 95:3674–3682. https://doi.org/10.3168/jds.2011-4968.
- Vaughn, J. M., R. D. Abdi, B. E. Gillespie, and O. Kerro Dego. 2020. Genetic diversity and virulence characteristics of *Staphylococcus aureus* isolates from cases of bovine mastitis. Microb. Pathog. 144:104171. https://doi.org/10.1016/j.micpath.2020.104171.
- Venables, W. N., and B. D. Ripley. 2002. Modern Applied Statistics with S. Springer.
- Zadoks, R. N., H. G. Allore, H. W. Barkema, O. C. Sampimon, G. J. Wellenberg, Y. T. Gröhn, and Y. T. Schukken. 2001. Cow- and quarter-level risk factors for *Streptococcus uberis* and *Staphylococcus aureus* mastitis. J. Dairy Sci. 84:2649–2663. https://doi.org/10 .3168/jds.S0022-0302(01)74719-4.