

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Federal Department of Economic Affairs, Education and Research EAER

Agroscope

## **Thermisation** for cheese milk or before milk cold storage

#### Walter Bisig, PhD, Agroscope, Food Microbial Systems

IDF Webinar Heat treatment of milk, 28th June 2022, virtual

www.agroscope.ch I good food, healthy environment

#### Outline of presentation

- 1. Definition of thermisation, legal aspects
- 2. Thermisation for cheese milk
  - a. Hurdle concept for cheese making
  - b. Raw milk quality
  - c. Heating conditions
  - d. Comparison with pasteurization
- 3. Thermisation before milk storage
- 4. Conclusions

Agroscope

#### Definition of thermisation

- Codex Alimentarius (2009): Code of hygienic practice for milk and milk products:
  - Thermization: The application to milk of a heat treatment of a lower intensity than pasteurisation that aims at reducing the number of microorganisms. A general reduction of log 3–4 can be expected. Microorganisms surviving will be heat-stressed and become more vulnerable to subsequent microbiological control measures
- Swiss confederation:
  - Labelling "Cheese made from thermised milk" if: Milk heated for at least 15 s at a temperature above 40°C and lower than 72°C and if the alkaline phosphatase test reaction is positive\*

#### Encyclopaedia of dairy sciences:

• A range of sub-pasteurisation heat treatments of milk (Deeth, 2022).

Walter Bisig

Thermisation of milk | IDF webinar on heat treatment

<sup>\*</sup> Labelling is voluntary; Regulation of the Swiss confederation on foodstuff of animal origin <u>817.022.108</u>

### **Thermisation for cheese milk**

### Technological hurdles secure food safety of semi-hard cheeses

|                                                   | Principle: Leistner and Gorris 1995                              |                                      |                                                 |                                               |                                                 |                                                                                                                  |                                          |  |
|---------------------------------------------------|------------------------------------------------------------------|--------------------------------------|-------------------------------------------------|-----------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------|--|
| H: milk<br>hygiene                                | F: heat<br>treatment                                             | t low tem-<br>perature               | a <sub>w</sub> water<br>activity                | pH,<br>acidity                                | Eh: ↓ redox<br>potential                        | pres.:<br>preservatives                                                                                          |                                          |  |
| Low bac-<br>teria count<br>in raw milk<br><10'000 | Thermisation:<br>65°C /15 s or<br>60°C /5 min or<br>57°C /30 min | Ripening<br>at 11 –<br>14°C          | 54 – 69%<br>moisture<br>on a fat-<br>free basis | Fast pH<br>drop; un-<br>ripened<br>pH 4.5-5.3 | E <sub>h</sub> ≈<br>-250 mV<br>(an-<br>aerobic) | Starter and NSLA<br>occupy ecosyste                                                                              | АВ<br>m                                  |  |
| < 24 h<br>milking-<br>cheese<br>making            | Scalding at<br>46 - 53°C                                         | Cold<br>storage<br>after<br>ripening | 1.5-1.9%<br>NaCl<br>a <sub>w</sub> : 0.964      | Lactic<br>acid,<br>acetic<br>acid.            |                                                 | > 75 d ripening: F<br>peptides, etc. for<br>L. mono.: $\psi$ 0.5 f<br>STEC: $\psi$ 1 f<br>Staph. aur: $\psi$ 2 f | FFA,<br>med.<br>log /m<br>og /m<br>og /m |  |

Thermisation of milk | IDF webinar on heat treatment Walter Bisig

(Values in lower row: Tête de Moine AOP; for this cheese no thermisation applied)

# Low bacteria count in raw milk for cheese with thermisation at delivery

Low count of spoilage bacteria

Low count of pathogenic bacteria

Codex: Additional provisions for the production of milk used for raw milk products.



Walter Bisig

#### Raw milk quality in Switzerland



SCC: 50% are below 100'000 /mL

8

#### **Prevalence pathogenic /toxin forming bacteria raw milk**

| Bacteria                              | Sample<br>number <sup>3)</sup> | Switzer-<br>land | Ger-<br>many | Italy | India              | USA  | Ni-<br>geria | Gha-<br>na | Ken-<br>ya         | Ethi-<br>opia      | NZ   |
|---------------------------------------|--------------------------------|------------------|--------------|-------|--------------------|------|--------------|------------|--------------------|--------------------|------|
| Listeria<br>monocytogenes             | 601                            | 0.33%            | 4.60%        | 1.44% |                    |      |              | 8.8%       |                    |                    |      |
| VTEC<br>/ STEC <sup>1), 2), 4)</sup>  | 601                            | 1.83%            | 1.35%        | 1.06% | 1.8% <sup>5)</sup> | 3.2% |              |            | 0.8% <sup>5)</sup> | 2.5% <sup>5)</sup> |      |
| Salmonella ssp.                       | 601                            | 0.0%             | 0.00%        | 0.00% |                    |      |              |            |                    |                    |      |
| Campylobacter                         | 601                            | 0.0%             | 1.91%        | 0.67% |                    |      |              |            |                    |                    |      |
| Yersinia<br>enterocolitica            | 601                            | 0.0%             | -            | -     |                    |      |              |            |                    |                    |      |
| Staph. aureus<br>>300 cfu/mL          | 601                            | 8.3%             |              |       |                    |      |              |            |                    | 10.8%              |      |
| Histamin forming<br>Ientilactobacilli |                                | 14-25%           |              |       |                    |      |              |            |                    |                    |      |
| Coxiella burnettii <sup>6)</sup>      | -                              | -                |              |       |                    |      | 63%          |            |                    |                    | 0.0% |

<sup>1)</sup> Verotoxin or shiga-toxin producing *Escherichia coli;* <sup>2)</sup> VTEC /STEC Screening: Method prEN ISO TS 13136 with germ isolation; <sup>3)</sup> From 173 milk producers; <sup>4)</sup> STx-gene & isolates; <sup>5)</sup> E. coli O157:H7

<sup>6)</sup> *Mycobacterium bovis, Brucella abortus* + *Coxiella burnettii* have largely been eradicated in developed nations. Still persist or re-emerging in some countries in Africa

9

### Thermisation of cheese milk

Tilsiter (CH). Made from thermised milk and raw milk

- Conditions: 65°C /15 s or 60°C /5 min, or 57°C /30 min
- Often only applied to the evening milk prior to storage over night.
- Primary purpose:

Reduce the risk of undesired fermentation in semi-hard cheeses

- Other purpose: Hurdle for food safety of semi-hard cheeses.
- Advantages compared to pasteurisation:
  - Enzymes, such as lipoprotein lipase (partially), and protease cathepsin D (mostly) are still active and contribute to cheese ripening
  - Thermoduric desired bacteria, such as pediococci are less inactivated
  - Diverse LAB and NSLAB contribute to ripening, flavour and texture
  - Reduces protein loss through migration of 
    ß-casein out of micelles after cold storage of milk
  - Higher microbial diversity is a contribution to gut health

## Inactivation of cheese spoilage bacteria by milk thermisation or pasteurisation



Thermisation of milk | IDF webinar on heat treatment Walter Bisig

(1) According to Sörqvist (2003),

(2) Based on data from Sollberger (1993),

(3) Based on data from Sumner et al. (1990); now called Lentilactobacillus parabuchneri

### Inactivation of pathogens /toxin-forming bacteria during thermisation + ripening of semi-hard cheese

| Bacteria                               | D 65<br>(s)       | Reduction<br>65°C /15 s | Reduction during<br>ripening per<br>month (log) <sup>2)</sup> |
|----------------------------------------|-------------------|-------------------------|---------------------------------------------------------------|
| Listeria<br>monocytogenes              | 21.6              | 0.7 log<br>(80%)        | < 0.5                                                         |
| Samonella spp.                         | 2.6               | 5.7 log                 | ≈ 1                                                           |
| Shig-toxin producing<br>E. coli        | <sup>1)</sup> 3.4 | 4.4 log                 | ≈ 1                                                           |
| Staphylococcus<br>aureus               | 15.4              | 0.9 log<br>(89%)        | 2 – 3<br>toxins stable                                        |
| Histamine-forming<br>Lentilactobacilli | 14.4              | 1.0 log<br>(91%)        | Slow after 30 – 60<br>days                                    |

<sup>2)</sup> Cheese made from raw or thermised milk needs to be ripened for  $\geq$  60 days in the US and many other countries

<sup>1)</sup> Average of six strains of *E. coli* 

Thermisation of milk | IDF webinar on heat treatment Walter Bisig

Eugster and Jakob, MSI (2019)

#### Proteolysis in cheese from thermised milk (cheddar)



 Primary proteolysis not significantly influenced (not shown)

- Secondary proteolysis higher in cheese from thermised milk compared to pasteurised milk
- Peptidases probably originating form the indigenous milk microflora or residual activity of milk proteinases contributed to proteolysis in cheese from thermised and from raw milk
- Active cathepsin D contributes to proteolysis, and to flavour development

Hickey et al., JDS 47, 2007

#### Lipolysis in cheese from thermised milk (cheddar)



- Esterases from starter culture have important influence
- With thermised and raw milk, additional other sources of lipolytic enzymes which increase FFA content:
  - Lipoproteinlipase and from indigenous microflora
  - In thermised milk, lipoprotein-lipase is partially active (65°C/20 s → 50% ¥)
  - Lipolysis possibly limited by access to substrate or cheese environment (cheddar)
  - In other cheese varieties with higher pH more activity as pH optimum is 9.2

## Thermisation before cold milk storage and further processing

#### Thermisation before cold storage of milk

- Initial quality of raw milk is very important:
  - RM quality highly correlated with counts after 65° /15 s and 3 d storage at 6°C
- Purpose:
  - To extend the keeping quality of raw milk by thermisation on delivery to dairy plants or on farms  $\rightarrow$  cold storage for an additional 3 days
  - To limit the growth of psychrotrophic bacteria,
  - These form heat-resistant enzymes causing spoilage of UHT milk, cheese, or other products with a long shelf-life.
- Markedly reduces the number of spoilage bacteria
- Markedly reduces the heat-labile psychrotrophic microflora responsible for spoilage at low temperatures
- Thermisation at 62-68°C for 15 s is practised widely: shelf-life 4°C +3 to 4 days

# Reduction of total bacteria, coliforms and psychrotrophs by thermisation

Bacterial count (cfu /mL) in milk thermised at 66-68°C /15 s, stored for 3 d at 2 - 5°C, 2 dairies):

|               | Control               | Thermised             | Reduction |
|---------------|-----------------------|-----------------------|-----------|
| Total count   | 2.1 × 10 <sup>6</sup> | 2.2 × 10 <sup>4</sup> | 2.0 log   |
|               | 3.2 × 10 <sup>5</sup> | 8.2 × 10 <sup>3</sup> | 1.6 log   |
| Coliforms     | 3.5 × 10 <sup>2</sup> | 1.8 × 10 <sup>1</sup> | 1.3 log   |
|               | $6.3 \times 10^2$     | 0.5 × 10 <sup>1</sup> | 2.1 log   |
| Psychrotrophs | 2.1 × 10 <sup>5</sup> | 1.5 × 10 <sup>2</sup> | 3.1 log   |

- The psychrotrophs are reduced the most, by 3 logs
- Important: Not all pathogens are inactivated, not suitable to ensure food safety.

Thermisation of milk | IDF webinar on heat treatment Walter Bisig

(Deeth, 2022, Rukke et al, 2011)

### Conclusions

- For raw milk cheese and cheese from thermised milk, superior milk quality is extremely important
- Thermisation, together with other hurdles, helps to avoid spoilage and to ensure food safety of semi-hard and sometimes soft cheeses
- Cheeses made from thermised milk, compared to the ones from pasteurised milk, have more proteolysis and a tendency for more lipolysis: Improves cheese flavour, texture and characteristics, and microbial diversity for gut health
- Thermisation of milk before cold storage and further processing extends the possible cold storage time by 3 to 4 days at 4 - to 6°C.
- Bacteria counts of thermised milk after cold storage is directly correlated with the bacteria count of the raw milk before thermisation.



#### Thank you for your attention

Walter Bisig walter.bisig@agroscope.admin.ch

Agroscope good food, healthy environment www.agroscope.admin.ch



Thermisation of milk | IDF webinar on heat treatment Walter Bisig

0

unan