Estimation of crossbreed beef carcass chemical composition by DXA scan of half-carcass or 11th rib

C. Xavier^{1,2}, I. Morel¹, R. Siegenthaler¹, F. Dohme-Meier¹, Y. Le Cozler², S. Lerch¹ Agroscope, Ruminants Research Unit, Tioleyre 4, 1725 Posieux, Switzerland, ²PEGASE, INRAE-Institut Agro, 16 Le Clos, 35590 Saint Gilles, France; caroline.xavier@agroscope.admin.ch

The aim was to estimate beef half carcass (HC) composition by using dual X-ray absorptiometry (DXA), from either HC or 11th rib analysis. 42 cold left HC (94±49 kg, 17 to 157 kg) and their 11th rib were obtained from bulls of the three most Swiss-widespread crossbreeds in dairy herds (♀ Brown Swiss x ♂ Angus, Limousin or Simmental). Lean, fat, bone mineral content (BMC) and total masses of cold HC and 11th rib were determined with a DXA scanner (iLunar, GE, "Right Arm" mode). HC was then grinded, before chemical analyses (lipid: Soxhlet, protein: Dumas, ash: 550°C). Regressions (R software, v3.6.3) were tested between the HC and 11th rib DXA values and HC chemical composition. HC contained 11±8.3 (0.8 to 29.1) kg lipid, 18±9.2 (3.1 to 30.6) kg protein and 4±1.8 (0.8 to 6.5) kg ash. The cold HC weight explained a large part of chemical component masses (lipid: $R^2=0.884$. residual coefficient of variation (rCV)=25.3%; protein R²=0.996, rCV=3.4%; ash R²=0.971, rCV=7.8%). It was also well estimated from HC DXA total mass with a R^2 of 0.999 (rCV=1.3%). Estimations of lipid, protein and ash masses with a single HC DXA variable were precise with fat (R^2 =0.983, rCV=9.7%), lean (R^2 =0.996, rCV=3.4%) and BMC (R²=0.975, rCV=7.8%), respectively. Multiple models were even more accurate with HC DXA fat, lean and BMC masses for lipid mass (R²=0.990, rCV=7.7%), cold HC weight and DXA fat mass for protein mass (R²=0.997 and rCV=2.9%), and cold HC weight, DXA fat and BMC masses for ash mass (R^2 =0.979 and rCV=7.2%). Multiple regressions of HC lipid and protein masses with 11th rib DXA variables provided R² very close to the previous ones established from HC DXA scan. But the rCV was twice higher for lipid mass (rCV=14.8%) and remained equal for protein mass (rCV=2.9%). Crossbreed effect was rarely significant in models and only improved slightly their accuracy (maximum of +1% for the R² and -1.5% for rCV for HC lipid mass from 11th rib DXA variables). A single rib DXA scan appears to be a promising method to estimate carcass composition in a simple, quick, reproducible, accurate and nondestructive way.