
metabolites

H

OH

OH

Article

Evaluating the Robustness of Biomarkers of Dairy Food
Intake in a Free-Living Population Using Single- and
Multi-Marker Approaches

Katherine J. Li 1,2, Kathryn J. Burton-Pimentel 2,*, Elske M. Brouwer-Brolsma 1 , Edith J. M. Feskens 1,
Carola Blaser 2, René Badertscher 2 , Reto Portmann 2 and Guy Vergères 2

����������
�������

Citation: Li, K.J.; Burton-Pimentel,

K.J.; Brouwer-Brolsma, E.M.; Feskens,

E.J.M.; Blaser, C.; Badertscher, R.;

Portmann, R.; Vergères, G. Evaluating

the Robustness of Biomarkers of

Dairy Food Intake in a Free-Living

Population Using Single- and

Multi-Marker Approaches.

Metabolites 2021, 11, 395. https://

doi.org/10.3390/metabo11060395

Academic Editor: Eiichiro Fukusaki

Received: 4 May 2021

Accepted: 12 June 2021

Published: 17 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Division of Human Nutrition and Health, Department of Agrotechnology and Food Sciences, Wageningen
University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands; katherine.li@wur.nl (K.J.L.);
elske.brouwer-brolsma@wur.nl (E.M.B.-B.); edith.feskens@wur.nl (E.J.M.F.)

2 Agroscope, Federal Office for Agriculture (FOAG), Federal Department of Economic Affairs, Education and
Research (EAER), Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland;
carola.blaser@agroscope.admin.ch (C.B.); rene.badertscher@agroscope.admin.ch (R.B.);
reto.portmann@agroscope.admin.ch (R.P.); guy.vergeres@agroscope.admin.ch (G.V.)

* Correspondence: kathryn.pimentel@agroscope.admin.ch; Tel.: +41-(0)-58-467-3187

Abstract: Studies examining associations between self-reported dairy intake and health are inconclu-
sive, but biomarkers hold promise for elucidating such relationships by offering objective measures of
dietary intake. Previous human intervention studies identified several biomarkers for dairy foods in
blood and urine using non-targeted metabolomics. We evaluated the robustness of these biomarkers
in a free-living cohort in the Netherlands using both single- and multi-marker approaches. Plasma
and urine from 246 participants (54 ± 13 years) who completed a food frequency questionnaire were
analyzed using liquid and gas chromatography-mass spectrometry. The targeted metabolite panel in-
cluded 37 previously-identified candidate biomarkers of milk, cheese, and/or yoghurt consumption.
Associations between biomarkers and energy-adjusted dairy food intakes were assessed by a ‘single-
marker’ generalized linear model, and stepwise regression was used to select the best ‘multi-marker’
panel. Multi-marker models that also accounted for common covariates better captured the subtle
differences for milk (urinary galactose, galactitol; sex, body mass index, age) and cheese (plasma
pentadecanoic acid, isoleucine, glutamic acid) over single-marker models. No significant associations
were observed for yogurt. Further examination of other facets of validity of these biomarkers may
improve estimates of dairy food intake in conjunction with self-reported methods, and help reach a
clearer consensus on their health impacts.

Keywords: dairy; milk; cheese; yoghurt; food intake biomarkers; multi-markers; validation

1. Introduction

Dairy products are widely acknowledged as an essential component of a healthy,
diverse diet. Over six billion people consume milk and dairy products globally [1], and
rely on these foods as a source of critical nutrients for growth, development, and disease
prevention. However, studies linking dairy and dairy fat intake with cardiovascular disease
and cardiometabolic conditions have yielded inconsistent findings, and there is still no
consensus among different systematic reviews and meta-analyses on this matter [2–4].
Furthermore, several recent studies have indicated that fermented dairy products may be
responsible for the cardioprotective effects of dairy foods (e.g., [5,6]). Fermentation of milk
releases bioactive compounds, including some with anti-hypertensive and immunomod-
ulatory properties, which can convey additional nutritive value [7]. Certain fermented
dairy products, such as yoghurt, also contain live bacterial cultures that can modify the
composition of the gut microbiota, thereby influencing the risk of developing obesity, type
II diabetes, and general cardiovascular diseases [6,8–10].
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For epidemiologists, a challenging but necessary task lies in capturing the ‘true’ intake
of dairy products, such that its relationship with disease risk can be accurately portrayed.
A major limitation of current dietary assessment tools [i.e., food frequency questionnaires
(FFQ), 24-h recalls] is their reliance on subjective reporting by participants while food intake
biomarkers (FIBs) offer an objective alternative, which can be used in conjunction with
self-report tools to improve the dietary intake assessment of dairy food intake [11]. The
odd-chain fatty acids pentadecanoic acid (C15:0) and heptadecanoic acid (C17:0) have been
used as markers for total dairy intake (in particular, dairy fat), and have been effectively
used for adjusting intakes when examining role of dairy consumption on cardiometabolic
diseases [12]. However, these FIBs may not be as useful in capturing low-fat dairy products
or distinguishing between specific dairy foods, and have also been criticized for being
non-specific when assessing dairy intake in populations with high fish consumption [13].
In addition, given the limitations of using single biomarkers to assess dietary intake of
a food (i.e., non-specific and high inter-individual variation), a multi-marker approach
implying a combination of FIBs may improve the precision of the assessment [14]. Recently,
multi-marker models have been developed for various foods including wine [15] and
cocoa [16]. The sum of C15:0, C17:0, and/or trans-palmitoleic acid (t16:1n-7) have been
previously used as biomarkers of dairy fat [17], but combined biomarkers reflecting the
intake of specific dairy foods have not been exploited.

Eight criteria have been proposed for the validation of FIBs, one of which includes
an evaluation of their robustness in both controlled intervention settings as well as free-
living populations with complex, uncontrolled diets [18]. A number of previous acute and
short-term, controlled human intervention studies have already been conducted in our
laboratory and resulted in the identification of several FIBs for milk, cheese, and yoghurt, in
serum and urine using untargeted metabolomics [19–22]. These FIBs were identified using
a combination of LC-MS, GC-MS, and NMR, since each platform offers unique advantages
for the detection of specific compounds based on factors such as compound size, polarity,
abundance, and ionization, and their combined use permits complementary coverage of
the metabolome [23]. In these studies, we also observed high inter-individual variability in
the response of several candidate FIBs based on genetic variation. Specifically, postprandial
responses for the lactose metabolites galactose, galactitol and galactonate in the serum
and urine of healthy men following acidified milk intake were concordant with genetic
lactase persistence [24]. In another study, we found that the oligosaccharides Lewis A
trisaccharide and Blood Group H disaccharide reflected milk intake, and hypothesized that
this was dependent on the expression of galactoside 2-alpha-L-fucosyltransferase 2 (FUT2)
or galactoside 2-alpha-L-fucosyltransferase 3 (FUT3) enzymes, which act in competition to
influence the production of these metabolites [20].

In the current paper, we aimed to evaluate the robustness of previously-identified
candidate FIBs for milk, cheese, and yoghurt in a free-living population in the Netherlands,
using both single- and multi-marker approaches, with investigation of known covariates
and genetic targets. For comparison, we also evaluated the performance of C15:0 and/or
C17:0 for predicting total dairy intake (as well as dairy intakes grouped by fermentation
status and high/low fat content) in our population.

2. Results
2.1. Characteristics of the Validation Sub-Cohort

The characteristics of the validation sub-cohort is provided in Table 1. The majority
of the participants were men (67%). The mean age of the participants was 54 ± 13 years,
with men (56 years) being significantly older than women (51 years). A majority of men
(63%) and almost half (46%) of women had a body mass index (BMI) corresponding to
overweight or obese (≥25 kg/m2), which were also significantly different between sexes.
A higher number and proportion of women (n = 12, 15%) than men followed a diet within
the month preceding the study. The vast majority (95%) of participants were categorized
as lactase persistent. Further, based on FUT2/FUT3 enzyme functional status, a majority
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of participants (with similar proportions in men and women) were classified as ‘secretors’
(79%), while a smaller percentage were ‘non-secretors’ (17%) and Lewis negative (4%).

Table 1. General characteristics of the participants a.

All (n = 246) Men (n = 165) Women (n = 81) p-Value

Age, years 54.4 ± 12.5 55.9 ± 11.6 51.2 ± 13.6 0.01 **

BMI, kg/m2 25.9 ± 3.9 26.1 ± 3.6 25.4 ± 4.4 0.18

BMI-category, n (%) 0.010 **
<25 kg/m2 105 (42.7) 61 (37.0) 44 (54.3)
≥25 kg/m2 141 (57.3) 104 (63.0) 37 (45.7)

Waist circumference, cm 92.5 ± 11.6 95.8 ± 10.5 85.6 ± 10.7 <0.001 ***

Education, n (%) 0.38
Low 19 (7.7) 12 (7.3) 7 (8.8)

Intermediate 77 (31.3) 49 (29.7) 28 (35.0)
High 149 (60.6) 104 (63.0) 45 (56.2)

Smoking status, n (%) 0.09
Never 119 (48.4) 71 (46.4) 48 (63.2)

Former 85 (34.6) 65 (42.5) 20 (26.3)
Current 25 (10.2) 17 (1.1) 8 (10.5)

Disease history, n (%)
Cancer 11 (4.5) 5 (3.0) 6 (7.4) 0.12

Diabetes 6 (2.4) 5 (3.0) 1 (1.2) 0.39
Heart attack 7 (2.8) 6 (3.6) 1 (1.2) 0.29

Hypertension 60 (24.4) 44 (26.7) 16 (19.8) 0.47
High cholesterol 52 (21.1) 38 (23.0) 14 (17.3) 0.58

Stroke 2 (0.8) 1 (0.6) 1 (1.2) 0.61

Diet during past month, n
(%) <0.001 ***

No 228 (92.7) 159 (96.4) 69 (85.2)
Yes, always 9 (3.7) 1 (0.6) 8 (9.9)

Yes, sometimes 9 (3.7) 5 (3.0) 4 (4.9)

Lactase status, n (%) 1.00
Persistent 104 (94.5) 81 (94.2) 23 (95.8)

Non-persistent 6 (5.5) 5 (5.8) 1 (4.2)

FUT2/FUT3 status, n (%) 0.41
Secretor (Le a−b+) 87 (79.1) 69 (80.2) 18 (75.0)

Non-secretor (Le a+b−) 19 (17.3) 13 (15.1) 6 (25.0)
Lewis negative (Le a−b−) 4 (3.6) 4 (4.7) 0 (0)

BMI, body mass index; FUT2, galactoside 2-alpha-L-fucosyltransferase 2; FUT3, galactoside 2-alpha-L-
fucosyltransferase 3; SD, standard deviation. ** p ≤ 0.01, *** p ≤ 0.001. a Values are presented as mean ± SD, unless
otherwise specified. Missing values: lactase, FUT2, and FUT3 status (n = 136), education (n = 1), smoking status
(n = 17). Differences in characteristics between sexes were assessed using the t-test (for continuous variables), or
chi-squared test (for categorical variables).

2.2. Intake Levels of Different Dairy Products

Quintiles of median energy-adjusted intakes for different dairy groups and individual
dairy foods are presented in Table 2. All participants consumed at least one type of dairy
product, but some participants did not consume low-fat non-fermented dairy (n = 65),
high-fat fermented dairy (n = 41), milk (n = 37), yoghurt (n = 34), high-fat non-fermented
dairy (n = 9), cheese (n = 4), high-fat dairy (n = 3), total non-fermented dairy (n = 2), low-fat
fermented dairy (n = 2), low-fat dairy (n = 1), and/or any fermented dairy (n = 1). Median
intakes in the highest quintile of consumption (Q5) ranged from 60 g/d for high-fat non-
fermented dairy to 527 g/d for total dairy. For individual dairy foods, median intakes were
highest for milk (303 g/d), followed by yoghurt (193 g/d) and cheese (67 g/d). Sex-specific
intake quintiles for the different dairy groups and individual dairy foods are presented in
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Tables S1 and S2 for men and women, respectively. Overall, men tended to have higher
median intakes of high-fat dairy, total fermented dairy, high-fat fermented dairy, high-fat
non-fermented dairy, low-fat fermented dairy, cheese, and yoghurt compared to women
(in the majority of quintiles). However, women had higher median intakes of low-fat dairy,
total non-fermented dairy, low-fat non-fermented dairy, and milk in all quintiles, as well as
total dairy (in all except lowest quintile) compared to men.

Table 2. Quintiles of intake for dairy groups and dairy foods (n = 246).

Food Group
Median Energy-Adjusted Intakes in g/d

nc Q1 (n = 50) nc Q2 (n = 49) nc Q3 (n = 49) nc Q4 (n = 49) nc Q5 (n = 49)

Total dairy 50 98 (71, 129) 49 214 (197, 235) 49 304 (279, 323) 49 372 (355, 394) 49 527 (469, 616)
High-fat dairy 47 10 (6, 15) 49 24 (21, 28) 49 42 (35, 48) 49 73 (64, 81) 49 135 (109, 163)
Low-fat dairy 49 43 (25, 59) 49 148 (119, 173) 49 242 (224, 257) 49 317 (304, 340) 49 480 (404, 590)

Total fermented dairy 49 41 (24, 49) 49 90 (69, 109) 49 143 (134, 161) 49 224 (204, 237) 49 334 (291, 393)
High-fat fermented dairy 9 3 (−1, 4) 49 9 (7, 10) 49 17 (14, 19) 49 37 (30, 45) 49 82 (65, 117)
Low-fat fermented dairy 48 15 (7, 23) 49 50 (40, 62) 49 108 (99, 124) 49 195 (158, 210) 49 304 (269, 370)

Total non-fermented dairy 48 12 (4, 22) 49 54 (44, 63) 49 103 (91, 124) 49 179 (160, 207) 49 322 (282, 340)
High-fat non-fermented dairy 41 3 (1, 5) 49 10 (9, 12) 49 18 (16, 20) 49 31 (25, 35) 49 60 (48, 89)
Low-fat non-fermented dairy 0 −4 (−9, 5) 34 22 (14, 32) 49 69 (55, 89) 49 146 (127, 173) 49 293 (263, 373)

Cheese 46 8 (4, 12) 49 19 (17, 21) 49 27 (24, 29) 49 43 (39, 47) 49 67 (58, 90)

Yoghurt 16 0 (0, 5) 49 38 (22, 53) 49 83 (72, 96) 49 126 (105, 139) 49 193 (150, 212)

Milk 13 4 (−8, 14) 49 40 (29, 48) 49 87 (72, 108) 49 162 (144, 191) 49 303 (272, 371)

FFQ, food frequency questionnaire; nc, number of consumers. Values are reported as median (IQR), unless otherwise specified.

2.3. Assessment of Biomarkers for Milk Intake

Twenty-one candidate FIBs in Table S3 that were previously found to be discriminant
for milk intake were assessed, of which fifteen were detected in plasma and/or urine. When
analyzed by quintiles of milk intake, a statistically significant increase in urinary galactitol
was observed (Q3–5 vs. Q1–2, p ≤ 0.05) (Figure 1a). Additional significant findings with
an increasing trend were observed between FIBs and sex-specific quintiles of milk intake,
including plasma phenylalanine and Lewis A trisaccharide in women, and urinary lactose
and galactitol in men (Figure S1).
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0.04, MAE ~ 93 g/d) (Table 3). Unadjusted and adjusted multi-marker models for milk 
derived from stepwise regression are presented in Tables S4 and S5. Adjusted multi-
marker models consisting of urinary galactose + galactitol + sex + BMI + age (analyzed by 
GC-MS) [rap = 0.20, R2 = 0.04, mean absolute error (MAE) = 92 g/d], and plasma tryptophan 
+ indole-3-propionic acid + sex [analyzed by liquid chromatography-mass spectrometry 
(LC-MS)] (rap = 0.25, R2 = 0.06, MAE = 102.8 g/d) had slightly improved performance accu-
racy for predicting milk intake compared to the single-marker models. 
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(0.00 
***)  
0.06 

0.53 0.28 
100.

5 W: 0.25 * 
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Figure 1. Significantly increased urinary galactitol levels by (a) quintiles of milk intake (significance
between quintiles denoted by different letters, p ≤ 0.05), and (b) continuous milk intake.
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Spearman’s correlations were weak and non-significant for the majority of milk FIBs,
with the exception of urinary lactose (rs = 0.16, p ≤ 0.05) and galactitol (rs = 0.2, p ≤ 0.05)
(Table 3, Figure 1b). Some sex-specific correlations were also observed between plasma
phenylalanine, tyrosine, tryptophan, indole-3-acetic acid, and Lewis A trisaccharide with
milk intake in women, and urinary lactose and galactitol with milk intake in men (Table 3).
These associations were paralleled in several single-marker generalized linear regression
(GLM) models, with significant results observed for urinary lactose, galactose, and galac-
titol in covariate-adjusted models (coefficients = 0.07–0.20, rap = 0.17–0.2, R2 = 0.03–0.04,
MAE ~ 93 g/d) (Table 3). Unadjusted and adjusted multi-marker models for milk derived
from stepwise regression are presented in Tables S4 and S5. Adjusted multi-marker mod-
els consisting of urinary galactose + galactitol + sex + BMI + age (analyzed by GC-MS)
[rap = 0.20, R2 = 0.04, mean absolute error (MAE) = 92 g/d], and plasma tryptophan +
indole-3-propionic acid + sex [analyzed by liquid chromatography-mass spectrometry
(LC-MS)] (rap = 0.25, R2 = 0.06, MAE = 102.8 g/d) had slightly improved performance
accuracy for predicting milk intake compared to the single-marker models.

The role of lactase persistence status on the relative abundance of lactose and its
metabolites in plasma and urine was further explored (Figure S2). As expected, plasma
levels of lactose were low across all samples, due to the analysis of fasting samples, while
urinary lactose was significantly higher in lactase non-persistent (LNP) individuals. While
a higher relative abundance of all lactose metabolites was generally observed in lactase
persistent (LP) individuals compared to LNP (with the possible exception of galactose in
urine), the differences were not significant. Due to the low numbers of LNP individuals in
our sub-cohort, further analyses of levels of lactose metabolites by quintiles of milk intake
stratified by LP/LNP status was not possible.

Similarly, the role of FUT2 and FUT3 enzyme status on levels of Lewis A trisaccha-
ride in plasma and Blood Group H disaccharide in plasma and urine was also explored
(Figure S3). No significant differences were observed in plasma Lewis A trisaccharide
between secretors and non-secretors. For Blood Group H disaccharide, while no sig-
nificant between-group differences were detected in plasma (borderline p = 0.057), sig-
nificantly higher levels were observed in urine for secretors compared to non-secretors
(p = 2.5 × 10−9).

2.4. Assessment of Biomarkers for Cheese Intake

Sixteen previously-identified candidate FIBs for cheese intake are presented in Table S3,
of which 14 were detected in plasma and/or urine samples of the current cohort (Table 4).
For the total population, no significant differences in candidate FIB concentrations for
cheese were observed across quintiles of cheese intake. However, when stratified into
sex-specific intake quintiles, levels of urinary indole-3-lactic acid were significantly in-
creased between quintiles of cheese intake in men, while plasma phenylalanyl-proline
was increased between quintiles of cheese intake in women (Figure S4). For plasma pro-
line in men, although also significant across quintiles, a decreasing trend was observed
(Figure S4).



Metabolites 2021, 11, 395 6 of 29

Table 3. Single-marker validation results for previously-identified candidate FIBs for milk.

Biomarker
Analytical Platform

(Biosample) a
Spearman’s Correlation

Coefficient (rs)
Unadjusted GLM b Adjusted GLM b,c

Coefficient SE p-Value rap R2 MAE Coefficient SE p-Value rap R2 MAE

C15:0 GC-MS (P) 0.03
M: 0.05 (Int: 5.05)

0.04
(0.06)
0.12

(0.00 ***)
0.76 0.13 0.02 88.5 (Int: 5.24)

0.08
(0.12)
0.12

(0.00 ***)
0.49 0.09 0.01 89.0

W: 0.00

C17:0 GC-MS (P) 0.02
M: 0.06 (Int: 5.05)

0.03
(0.06)
0.14

(0.00 ***)
0.82

−0.12 0.01 88.5 (Int: 5.24)
0.08

(0.12)
0.14

(0.00 ***)
0.55 0.12 0.01 88.8

W: 0.00

Phenylalanine LC-MS (P) 0.11
M: 0.03 (Int: 5.06)

0.08
(0.05)
0.05

(0.00 ***)
0.10 0.25 0.06 104.0 (Int: 5.29)

0.09
(0.11)
0.05

(0.00 ***)
0.07 0.47 0.22 99.8

W: 0.32 **

Tyrosine LC-MS (P) 0.08
M: 0.01 (Int: 5.06)

0.08
(0.05)
0.05

(0.00 ***)
0.12 0.15 0.02 104.5 (Int: 5.29)

0.09
(0.11)
0.05

(0.00 ***)
0.06 0.53 0.28 100.5

W: 0.25 *

Tryptophan LC-MS (P) 0.12
M: 0.06 (Int: 5.06)

0.11
(0.05)
0.06

(0.00 ***)
0.10 0.16 0.03 105.6 (Int: 5.28)

0.11
(0.11)
0.06

(0.00 ***)
0.09 0.38 0.14 101.7

W: 0.25 *

Indole-3-propionic acid LC-MS (P) 0.04
M: −0.03 (Int: 5.07)

0.02
(0.05)
0.06

(0.00 ***)
0.68 0.05 0.00 106.4 (Int: 5.27)

0.02
(0.11)
0.06

(0.00 ***)
0.75 0.40 0.16 102.7

W: 0.16

Indole-3-acetic acid LC-MS (P) 0.10
M: −0.01 (Int: 5.06)

0.09
(0.05)
0.07

(0.00 ***)
0.18

−0.08 0.01 106.3 (Int: 5.26)
0.08

(0.11)
0.07

(0.00 ***)
0.22 0.25 0.07 103.7

W: 0.29 *

Lactose

GC-MS (U) 0.16 *
M: 0.23 ** (Int: 5.12)

0.12
(0.05)
0.06

(0.00 ***)
0.05 0.16 0.03 91.8 (Int: 5.30)

0.13
(0.11)
0.06

(0.00 ***)
0.03 *

0.20 0.04 92.7
W: 0.08

GC-MS (P) −0.01
M: −0.05 (Int: 5.05)

0.06
(0.06)
0.09

(0.00 ***)
0.55 0.09 0.01 88.3 (Int: 5.23)

0.05
(0.12)
0.09

(0.00 ***)
0.59 0.10 0.01 88.8

W: 0.11

Galactose

GC-MS (U) 0.04
M: 0.11 (5.12)

0.04
(0.05)
0.03

(0.00 ***)
0.20 0.22 0.05 94.3 (Int: 5.33)

0.07
(0.11)
0.03

(0.00 ***)
0.04

0.21 0.04 93.0
W: 0.10

GC-MS (P) −0.02
M: −0.02 (5.05)

−0.11
(0.06)
0.27

(0.00 ***)
0.68

−0.08 0.01 89.4 (Int: 5.24)
−0.12

(0.12)
0.27

(0.00 ***)
0.65 0.08 0.01 88.5

W: −0.02

Galactitol

GC-MS (U) 0.20 **
M: 0.23 ** (Int: 5.12)

0.21
(0.05)
0.10

(0.00 ***)
0.03

0.17 0.03 93.6 (Int: 5.28)
0.20

(0.11)
0.10

(0.00 ***)
0.04

0.17 0.03 93.3
W: 0.07

GC-MS (P) 0.00
M: −0.02 (Int: 5.05)

0.01
(0.06)
0.12

(0.00 ***)
0.94

−0.13 0.02 88.6 (Int: 5.24)
0.06

(0.12)
0.12

(0.00 ***)
0.60 0.14 0.02 88.7

W: 0.05
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Table 3. Cont.

Biomarker
Analytical Platform

(Biosample) a
Spearman’s Correlation

Coefficient (rs)
Unadjusted GLM b Adjusted GLM b,c

Coefficient SE p-Value rap R2 MAE Coefficient SE p-Value rap R2 MAE

Galactonate

LC-MS (U) 0.14
M: 0.01 (Int: 5.12)

0.04
(0.05)
0.05

(0.00 ***)
0.36 0.12 0.01 96.7 (Int: 5.29)

0.05
(0.11)
0.05

(0.00 ***)
0.30 0.15 0.02 96.7

W: 0.22

GC-MS (U) 0.04
M: 0.08 (Int: 5.12)

0.02
(0.05)
0.07

(0.00 ***)
0.72 0.19 0.04 95.6 (Int: 5.30)

0.05
(0.11)
0.07

(0.00 ***)
0.43 0.17 0.03 96.0

W: 0.03

GC-MS (P) 0.02
M: 0.04 (Int: 5.05)

0.07
(0.06)
0.08

(0.00 ***)
0.36 0.13 0.02 87.8 (Int: 5.22)

0.09
(0.12)
0.08

(0.00 ***)
0.27 0.13 0.02 87.7

W: 0.02

Blood group H disaccharide

LC-MS (P) −0.07
M: −0.10 (Int: 5.07)

−0.02
(0.05)
0.05

(0.00 ***)
0.62 0.09 0.01 106.0 (Int: 5.27)

−0.02
(0.11)
0.05

(0.00 ***)
0.63 0.38 0.15 102.3

W: −0.06

LC-MS (U) −0.05
M: 0.05 (Int: 5.12)

0.00
(0.05)
0.05

(0.00 ***)
0.94 0.04 0.00 97.1 (Int: 5.30)

0.03
(0.11)
0.05 (0.00 ***)

0.60
0.12 0.02 97.0

W: −0.10

Lewis A trisaccharide LC-MS (P) 0.07
M: −0.01 (Int: 5.07)

0.00
(0.05)
0.04

(0.00 ***)
0.97

−0.01 0.00 106.4 (Int: 5.27)
0.00

(0.11)
0.04

(0.00 ***)
0.93 0.30 0.09 102.5

W: 0.26 *

Hippurate GC-MS (U) −0.10
M: −0.02 (Int: 5.12)

−0.04
(0.05)
0.11

(0.00 ***)
0.73

−0.15 0.02 95.7 (Int: 5.30)
0.01

(0.11)
0.11

(0.00 ***)
0.91 0.12 0.02 95.2

W: −0.08

Methionine GC-MS (P) 0.01
M: 0.03 (Int: 5.05)

0.08
(0.06)
0.13

(0.00 ***)
0.53 0.00 0.00 88.1 (Int: 5.25)

0.13
(0.12)
0.13

(0.00 ***)
0.32 0.10 0.01 87.5

W: 0.05

C15:0, pentadecanoic; C17:0, heptadecanoic acid; FIB, food intake biomarker; GC-MS, gas chromatography mass spectrometry; GLM, generalized linear model; LC-MS, liquid chromatography mass spectrometry;
M, men; MAE, mean absolute error; P, plasma; rap, correlation between actual and predicted intake; SE, standard error; U, urine; W, women. Significant results are bolded: * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001.
a For the current study, biomarkers that were previously detected in serum were validated in plasma. For biomarkers that were previously detected using NMR, GC-MS was used as a substitution platform. A
few biomarkers were not visible [asparagine (LC-MS plasma), taurine (LC-MS plasma), allantoin (GC-MS urine)] or not detected [galactono-1,5-lactone (GC-MS plasma and urine), galactonate (LC-MS plasma),
gluconic acid and delta-gluconolactone (LC-MS plasma)] and were therefore not included in the current validation. b Intercept (Int) values for the models are provided in brackets. c Adjusted for age, sex,
and BMI.
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Table 4. Single-marker validation results for previously-identified candidate FIBs for cheese.

Biomarker
Analytical Platform

(Biosample) a
Spearman’s Correlation

Coefficient (rs)
Unadjusted GLM b Adjusted GLM b,c

Coefficient SE p-Value rap R2 MAE Coefficient SE p-Value rap R2 MAE

C15:0 GC-MS (P) 0.12
M: 0.15 (Int: 3.91)

0.12
(0.03)
0.07

(0.00 ***)
0.10 0.21 0.04 15.5 (Int: 4.00)

0.12
(0.07)
0.07

(0.00 ***)
0.11 0.10 0.01 16.0

W: 0.07

C17:0 GC-MS (P) 0.08
M: 0.12 (Int: 3.91)

0.10
(0.03)
0.08

(0.00 ***)
0.23 0.19 0.04 15.8 (Int: 4.00)

0.10
(0.07)
0.08

(0.00 ***)
0.23 0.03 0.00 16.3

W: 0.04

3-Phenyllactic acid

GC-MS (U) −0.11
M: 0.08 (Int: 3.97)

0.01
(0.03)
0.04

(0.00 ***)
0.78

−0.17 0.03 18.9 (Int: 4.099)
0.00

(0.07)
0.04

(0.00 ***)
0.98 0.16 0.02 18.5

W: 0.08

GC-MS (P) −0.05
M: 0.07 (Int: 3.91)

−0.06
(0.03)
0.08

(0.00 ***)
0.45

−0.07 0.01 16.4 (Int: 3.99)
−0.05

(0.07)
0.08

(0.00 ***)
0.58

−0.02 0.00 16.7
W: −0.17

3-Hydroxy-isobutyrate GC-MS (P) −0.04
M: −0.04 (Int: 3.91)

0.00
(0.03)
0.07

(0.00 ***)
0.99

−0.04 0.00 16.2 (Int: 3.99)
0.00

(0.07)
0.08

(0.00 ***)
0.95 0.03 0.00 16.6

W: 0.01

Phenylalanyl-proline

LC-MS (P) 0.05
M: 0.01 (Int: 3.88)

0.04
(0.04)
0.03

(0.00 ***)
0.17

−0.11 0.01 20.6
(Int:

4.06)0.05
(0.08)
0.03

(0.00 ***)
0.09 0.07 0.01 20.3

W: 0.18

LC-MS (U) −0.07
M: −0.08 (Int: 3.97)

0.00
(0.03)
0.08

(0.00 ***)
0.97

−0.12 0.01 22.5 (Int: 4.11)
0.04

(0.07)
0.08

(0.00 ***)
0.68

−0.06 0.00 22.7
W: 0.01

Indole-3-lactic acid

LC-MS (P) 0.06
M: 0.02 (Int: 3.89)

0.05
(0.04)
0.04

(0.00 ***)
0.25

−0.07 0.01 20.8 (Int: 4.05)
0.05

(0.08)
0.04

(0.00 ***)
0.24 0.07 0.01 20.5

W: 0.18

LC-MS (U) 0.13
M: 0.20 * (Int: 3.97)

0.18
(0.03)
0.11

(0.00 ***)
0.11 0.11 0.01 22.2 (Int: 4.08)

0.10
(0.08)
0.12

(0.00 ***)
0.40 0.04 0.00 22.6

W: 0.13

Proline

LC-MS (U) −0.05
M: 0.03 (Int: 3.97)

0.06
(0.03)
0.07

(0.00 ***)
0.40 0.24 0.06 22.3 (Int: 4.10)

0.07
(0.07)
0.07

(0.00 ***)
0.32 0.04 0.00 22.6

W: 0.05

GC-MS (P) −0.16 *
M: −0.15 (Int: 3.9)

−0.07
(0.03)
0.04

(0.00 ***)
0.07 0.05 0.00 17.1 (Int: 3.98)

−0.07
(0.07)
0.04

(0.00 ***)
0.10 0.01 0.00 17.7

W: −0.11

Alanine GC-MS (U) 0.12
M: 0.04 (Int: 3.97)

0.00
(0.03)
0.05

(0.00 ***)
0.96

−0.22 0.05 18.9 (Int: 4.10)
0.02

(0.07)
0.05

(0.00 ***)
0.73 0.07 0.00 18.5

W: −0.14

Pyroglutamate GC-MS (U) −0.01
M: −0.06 (Int: 3.97)

−0.12
(0.03)
0.10

(0.00 ***)
0.24 0.11 0.01 18.4 (Int: 4.09)

−0.08
(0.07)
0.10

(0.00 ***)
0.45 0.26 0.07 18.2

W: −0.09

Methionine GC-MS (P) −0.14
M: −0.10 (Int: 3.91)

−0.13
(0.03)
0.08

(0.00 ***)
0.08

−0.02 0.00 17.3 (Int: 3.98)
−0.13

(0.07)
0.08

(0.00 ***)
0.10

−0.08 0.01 17.8
W: −0.16
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Table 4. Cont.

Biomarker
Analytical Platform

(Biosample) a
Spearman’s Correlation

Coefficient (rs)
Unadjusted GLM b Adjusted GLM b,c

Coefficient SE p-Value rap R2 MAE Coefficient SE p-Value rap R2 MAE

Leucine GC-MS (P) −0.11
M: −0.03 (Int: 3.91)

−0.14
(0.03)
0.10

(0.00 ***)
0.15

−0.09 0.01 16.7 (Int: 3.98)
−0.14

(0.07)
0.11

(0.00 ***)
0.19

−0.04 0.00 17.1
W: −0.19

Glutamic acid GC-MS (P) −0.04
M: 0.00 (Int: 3.91)

−0.02
(0.03)
0.05

(0.00 ***)
0.77

−0.01 0.00 16.3 (Int: 3.99)
−0.01

(0.07)
0.05

(0.00 ***)
0.81

−0.02 0.00 16.8
W: −0.05

Valine GC-MS (P) −0.12
M: −0.08 (Int: 3.91)

−0.13
(0.03)
0.08

(0.00 ***)
0.13

−0.05 0.00 17.0 (Int: 3.98)
−0.12

(0.07)
0.09

(0.00 ***)
0.16

−0.07 0.01 17.5
W: −0.13

Isoleucine GC-MS (P) −0.12
M: −0.06 (Int: 3.91)

−0.14
(0.03)
0.08

(0.00 ***)
0.08

−0.10 0.01 17.2 (Int: 3.97)
−0.13

(0.07)
0.08

(0.00 ***)
0.12

−0.07 0.00 17.5
W: −0.20

C15:0, pentadecanoic; C17:0, heptadecanoic acid; FIB, food intake biomarker; GC-MS, gas chromatography mass spectrometry; GLM, generalized linear model; LC-MS, liquid chromatography mass spectrometry;
M, men; MAE, mean absolute error; P, plasma; rap, correlation between actual and predicted intake; SE, standard error; U, urine; W, women. Significant results are bolded: * p ≤ 0.05, *** p ≤ 0.001. a For the
current study, biomarkers that were previously detected in serum were validated in plasma. For biomarkers that were previously detected using NMR, GC-MS was used as a substitution platform. A few
biomarkers were not visible [aminoadipic acid (LC-MS plasma and urine), citrulline (LC-MS plasma), valyl-threonine (LC-MS plasma)] and were therefore not included in the current validation. b Intercept (Int)
values for the models are provided in brackets. c Adjusted for age, sex, and BMI.
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No significant positive Spearman’s correlations were observed between FIBs and
cheese intake on a continuous scale for any of the FIBs, but when stratified by sex, a
significant correlation was revealed for urinary indole-3-lactic acid in men (Table 4). No
significant single-marker models (adjusted or unadjusted) were generated for any of the
FIBs for cheese intake. From the multi-marker models, a combination of plasma C15:0
+ isoleucine + glutamic acid [analysed by gas chromatography-mass spectrometry (GC-
MS)] yielded a significant model for predicting cheese intake, albeit with somewhat poor
performance (rap = 0.16, R2 = 0.03, MAE = 17 g/d) (Table S4). Inclusion of covariates in
an adjusted multi-marker model did not further reveal combinations of biomarkers or
biomarker and covariates that better predicts cheese intake (plasma C15:0 + isoleucine +
glutamic acid was still the best model) (Table S5).

2.5. Assessment of Biomarkers for Yoghurt Intake

Out of the ten candidate FIBs that were previously-identified for yoghurt intake
in plasma (Table S3), eight were detected in plasma in the current study (Table 5). No
significant differences were found between plasma levels of these FIBs by increasing
quintiles of yoghurt intake in the total population. However, when stratified into sex-
specific intake quintiles, a significant difference was found for plasma tyrosine in women
(Q2–5 vs. Q1, p ≤ 0.05), although it should be noted that Q1 comprised primarily non-
consumers (Figure S5).

Spearman’s correlations were weak and non-significant for all FIBs. Similarly, there
were no significant single-marker models for yogurt (unadjusted or adjusted) (Table 5).
From the multi-marker models, a significant adjusted model consisting of threonine + tyro-
sine + sex was generated for yoghurt intake (Table S5). However, the model performance
was very poor (rap = 0.03, R2 = 0.0008, MAE = 68 g/d).

2.6. Assessment of Pentadecanoic Acid (C15:0) and Heptadecanoic Acid (C17:0) as Biomarkers for
General Dairy Intake

Differences in the relative abundance of C15:0 and C17:0 in fasting plasma were
assessed by quintiles of intake for various dairy groups. Significantly higher C15:0 and
C17:0 were observed with higher quintiles of total fermented dairy intake (Q2-Q5 vs. Q1,
p ≤ 0.05) (Figure 2a,b), but not for other dairy groups. For C17:0 and total non-fermented
dairy intake, the effect was not clear (Q1, Q3, Q5 vs. Q2, Q4 vs. Q3, p ≤ 0.05) (Figure S6).
In addition, no significant differences in levels of these fatty acids were observed between
intake quintiles for other dairy groups (including total dairy), even when stratified into
sex-specific intake quintiles.

The seemingly stronger links between these biomarkers and fermented dairy groups
was further observed in analyses with continuous intakes. Although correlations between
C15:0 or C17:0 with dairy groups were generally weak, they were positive and significant
for total dairy (C15:0 rs = 0.17), low-fat dairy (C15:0 rs = 0.16), total fermented dairy (C15:0
rs = 0.24; C17:0 rs = 0.19), and low-fat fermented dairy (C15:0 rs = 0.19; C17:0 rs = 0.16)
(p ≤ 0.05) (Table 6 and Figure 2c–h). When stratified by sex, significant positive correlations
were observed in men for C15:0 and C17:0 with low-fat dairy, total fermented dairy, and
between C15:0 and low-fat fermented dairy. Similarly, in the single-marker regression
models, positive and significant models were generated for C15:0 and total dairy, total
fermented dairy, and low-fat fermented dairy intake, and similarly for C17:0 and total
and low-fat fermented dairy intake (Table 6). Adjustment of the models by sex, BMI, and
age also revealed a significant model for C15:0 and low-fat dairy. For C15:0 and total
dairy intake, adjustment measurably improved the model performance (rs = 0.3, R2 = 0.1,
MAE = 125 g/d).
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Table 5. Single-marker validation results for previously-identified candidate FIBs for yoghurt.

Biomarker
Analytical Platform

(Biosample) a
Spearman’s Correlation

Coefficient (rs)
Unadjusted GLM b Adjusted GLM b,c

Coefficient SE p-Value rap R2 MAE Coefficient SE p-Value rap R2 MAE

Proline LC-MS (P) 0.01
M: 0.01 (Int: 4.53)

−0.01
(0.06)
0.06

(0.00 ***)
0.89 0.13 0.02 68.0 (Int: 4.69)

0.01
(0.13)
0.06

(0.00 ***)
0.92

−0.12 0.02 68.5
W: 0.17

Indole-3-lactic acid LC-MS (P) 0.03
M: 0.01 (Int: 4.53)

0.02
(0.06)
0.08

(0.00 ***)
0.80

−0.05 0.00 67.8 (Int: 4.68)
0.03

(0.13)
0.08

(0.00 ***)
0.73

−0.15 0.02 68.7
W: 0.14

Lysine LC-MS (P) 0.02
M: −0.02 (Int: 4.53)

0.01
(0.06)
0.07

(0.00 ***)
0.89 0.08 0.01 67.8 (Int: 4.69)

0.02
(0.13)
0.07

(0.00 ***)
0.81

−0.16 0.03 68.5
W: 0.20

Threonine LC-MS (P) 0.04
M: −0.01 (Int: 4.53)

−0.01
(0.06)
0.06

(0.00 ***)
0.92 0.02 0.00 67.9 (Int: 4.68)

−0.00
(0.13)
0.06

(0.00 ***)
0.97

−0.13 0.02 68.5
W: 0.20

Phenylalanine LC-MS (P) 0.08
M: 0.07 (Int: 4.53)

0.03
(0.06)
0.06

(0.00 ***)
0.64 0.01 0.00 67.6 (Int: 4.69)

0.04
(0.13)
0.06

(0.00 ***)
0.53

−0.12 0.01 68.3
W: 0.17

Tyrosine LC-MS (P) 0.12
M: 0.10 (Int: 4.52)

0.06
(0.06)
0.06

(0.00 ***)
0.29

−0.09 0.01 67.4 (Int: 4.70)
0.07

(0.13)
0.06

(0.00 ***)
0.21

−0.15 0.02 68.1
W: 0.21

Tryptophan LC-MS (P) 0.03
M: 0.02 (Int: 4.53)

0.02
(0.06)
0.08

(0.00 ***)
0.83

−0.15 0.02 68.0 (Int: 4.69)
0.02

(0.13)
0.07

(0.00 ***)
0.75

−0.17 0.03 69.0
W: 0.10

Indole-3-acetaldehyde LC-MS (P) 0.03
M: 0.00 (Int: 4.53)

0.03
(0.06)
0.09

(0.00 ***)
0.70

−0.17 0.03 67.7 (Int: 4.69)
0.05

(0.13)
0.09

(0.00 ***)
0.59

−0.15 0.02 68.4
W: 0.15

FIB, food intake biomarker; GLM, generalized linear model; LC-MS, liquid chromatography mass spectrometry; M, men; MAE, mean absolute error; P, plasma; rap, correlation between actual and predicted
intake; SE, standard error; W, women. Significant results are bolded: *** p ≤ 0.001. a For the current study, biomarkers that were previously detected in serum were validated in plasma. A few biomarkers were
not visible [citrulline (LC-MS plasma) and asparagine (LC-MS plasma)] and were therefore not included in the current validation. b Intercept (Int) values for the models are provided in brackets. c Adjusted for
age, sex, and BMI.
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Table 6. Single-marker validation results for pentadecanoic acid (C15:0) and heptadecanoic acid (C17:0) by dairy group.

Biomarker
Analytical Platform

(Biosample)
Spearman’s Correlation

Coefficient (rs)
Unadjusted GLM a Adjusted GLM a,b

Coefficient SE p-Value rap R2 MAE Coefficient SE p-Value rap R2 MAE

Total Dairy

C15:0 GC-MS (P) 0.17 *
M: 0.17 (Int: 5.89)

0.16
(0.03)
0.07

(0.00 ***)
0.02 *

0.06 0.00 130.9 (Int: 6.08)
0.17

(0.07)
0.07

(0.00 ***)
0.02 *

0.31 0.10 125.4
W: 0.13

C17:0 GC-MS (P) 0.12
M: 0.14 (Int: 5.89)

0.15
(0.03)
0.08

(0.00 ***)
0.07

−0.01 0.00 128.1 (Int: 6.08)
0.16

(0.07)
0.08

(0.00 ***)
0.05

0.37 0.14 122.7
W: 0.12

High-Fat Dairy

C15:0 GC-MS (P) −0.01
M: −0.04 (Int: 4.22)

0.15
(0.06)
0.12

(0.00 ***)
0.21

0.03 0.00 56.2 (Int: 4.30)
0.16

(0.12)
0.12

(0.00 ***)
0.20

0.10 0.01 56.2
W: 0.09

C17:0 GC-MS (P) −0.06
M: −0.08 (Int: 4.22)

0.10
(0.06)
0.14

(0.00 ***)
0.49

−0.03 0.00 56.0 (Int: 4.30)
0.10

(0.12)
0.14

(0.00 ***)
0.50

−0.01 0.00 56.1
W: 0.00

Low-Fat Dairy

C15:0 GC-MS (P) 0.16 *
M: 0.19 * (Int: 5.68)

0.16
(0.04)
0.09

(0.00 ***)
0.06

0.07 0.01 139.5 (Int: 5.89)
0.17

(0.08)
0.09

(0.00 ***)
0.05 *

0.26 0.07 136.6
W: 0.07

C17:0 GC-MS (P) 0.13
M: 0.17* (Int: 5.68)

0.16
(0.04)
0.10

(0.00 ***)
0.11

0.04 0.00 137.9 (Int: 5.89)
0.17

(0.08)
0.10

(0.00 ***)
0.09

0.32 0.10 133.8
W: 0.07

Total Fermented Dairy

C15:0 GC-MS (P) 0.24 ***
M: 0.24 ** (Int: 5.25)

0.27
(0.04)
0.09

(0.00 ***)
0.00 *

0.01 0.00 107.3 (Int: 5.43)
0.25

(0.09)
0.09

(0.00 ***)
0.01 **

0.09 0.01 106.7
W: 0.21

C17:0 GC-MS (P) 0.19 **
M: 0.20 * (Int: 5.25)

0.26
(0.04)
0.11

(0.00 ***)
0.01 *

−0.04 0.00 105.3 (Int: 5.43)
0.23

(0.09)
0.11

(0.00 ***)
0.03 *

0.06 0.00 103.7
W: 0.18

High-fat Fermented Dairy

C15:0 GC-MS (P) 0.05
M: 0.07 (Int: 3.80)

0.20
(0.06)
0.13

(0.00 ***)
0.11

0.18 0.03 35.7 (Int: 3.85)
0.24

(0.13)
0.13

(0.00 ***)
0.06

0.14 0.02 35.9
W: 0.04

C17:0 GC-MS (P) 0.01
M: 0.06 (Int: 3.80)

0.14
(0.06)
0.15

(0.00 ***)
0.34

0.10 0.01 36.2 (Int: 3.85)
0.17

(0.13)
0.15

(0.00 ***)
0.26

0.02 0.00 36.4
W: −0.07
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Table 6. Cont.

Biomarker
Analytical Platform

(Biosample)
Spearman’s Correlation

Coefficient (rs)

Unadjusted GLM a Adjusted GLM a,b

Coefficient SE p-Value rap R2 MAE Coefficient SE p-Value rap R2 MAE

Low-Fat Fermented Dairy

C15:0 GC-MS (P) 0.19 **
M: 0.19 * (Int: 4.98)

0.29
(0.06)
0.12

(0.00 ***)
0.01 *

−0.03 0.00 101.1 (Int: 5.20)
0.25

(0.11)
0.12

(0.00 ***)
0.03 *

0.04 0.00 103.6
W: 0.19

C17:0 GC-MS (P) 0.16 *
M: 0.15 (Int: 4.99)

0.30
(0.06)
0.14

(0.00 ***)
0.03 *

−0.05 0.00 97.7 (Int: 5.20)
0.25

(0.11)
0.13

(0.00 ***)
0.06 0.04 0.00 99.0

W: 0.19

Total Non-Fermented Dairy

C15:0 GC-MS (P) 0.03
M: 0.06 (Int: 5.14)

0.04
(0.05)
0.11

(0.00 ***)
0.74 0.12 0.01 87.3 (Int: 5.33)

0.08
(0.11)
0.11

(0.00 ***)
0.48 0.07 0.01 88.3

W: 0.02

C17:0 GC-MS (P) 0.02
M: 0.06 (Int: 5.14)

0.03
(0.05)
0.13

(0.00 ***)
0.84

−0.11 0.01 87.2 (Int: 5.33)
0.07

(0.11)
0.13

(0.00 ***)
0.57 0.09 0.01 88.0

W: 0.01

High-Fat Non-Fermented Dairy

C15:0 GC-MS (P) −0.09
M: −0.12 (Int: 3.71)

0.03
(0.06)
0.13

(0.00 ***)
0.83

−0.13 0.02 29.5 (Int: 3.79)
0.00

(0.13)
0.13

(0.00 ***)
1.00

−0.20 0.04 29.9
W: −0.01

C17:0 GC-MS (P) −0.12
M: −0.19 * (Int: 3.71)

0.01
(0.06)
0.15

(0.00 ***)
0.96

−0.09 0.01 29.4 (Int: 3.79)
−0.02

(0.13)
0.15

(0.000 ***)
0.88

−0.18 0.03 29.7
W: 0.00

Low-Fat Non-Fermented Dairy

C15:0 GC-MS (P) 0.03
M: 0.10 (Int: 4.99)

0.03
(0.06)
0.13

(0.00 ***)
0.79 0.15 0.02 97.1 (Int: 5.19)

0.09
(0.12)
0.13

(0.00 ***)
0.48 0.19 0.04 95.0

W: −0.05

C17:0 GC-MS (P) 0.03
M: 0.12 (Int: 4.99)

0.03
(0.06)
0.15

(0.00 ***)
0.85

−0.14 0.02 97.1 (Int: 5.19)
0.09

(0.12)
0.15

(0.00 ***)
0.55 0.21 0.04 95.0

W: −0.07

C15:0, pentadecanoic; C17:0, heptadecanoic acid; GC-MS, gas chromatography mass spectrometry; GLM, generalized linear model; M, men; MAE, mean absolute error; P, plasma; rap, correlation between actual
and predicted intake; SE, standard error; W, women. Significant results are bolded: *p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001. a Intercept (Int) values for the models are provided in brackets. b Adjusted for age, sex,
and BMI.
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Figure 2. Significantly increased plasma pentadecanoic acid (C15:0) and/or heptadecanoic acid 
(C17:0) with increasing dairy intake. (a) C15:0 by quintiles of total fermented dairy intake, (b) C17:0 
by quintiles of total fermented dairy intake (significance between quintiles denoted by different 
letters, p ≤ 0.05), (c) C15:0 by continuous total dairy intake, (d) C15:0 by continuous low-fat dairy 
intake, (e) C15:0 by continuous total fermented dairy intake, (f) C17:0 by continuous total fermented 
dairy intake, (g) C15:0 by continuous low-fat fermented dairy intake, (h) C17:0 by continuous low-
fat fermented dairy intake. 
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was further observed in analyses with continuous intakes. Although correlations between 
C15:0 or C17:0 with dairy groups were generally weak, they were positive and significant 
for total dairy (C15:0 rs = 0.17), low-fat dairy (C15:0 rs = 0.16), total fermented dairy (C15:0 
rs = 0.24; C17:0 rs = 0.19), and low-fat fermented dairy (C15:0 rs = 0.19; C17:0 rs = 0.16) (p ≤ 
0.05) (Table 6 and Figure 2c–h). When stratified by sex, significant positive correlations 
were observed in men for C15:0 and C17:0 with low-fat dairy, total fermented dairy, and 
between C15:0 and low-fat fermented dairy. Similarly, in the single-marker regression 
models, positive and significant models were generated for C15:0 and total dairy, total 
fermented dairy, and low-fat fermented dairy intake, and similarly for C17:0 and total and 
low-fat fermented dairy intake (Table 6). Adjustment of the models by sex, BMI, and age 
also revealed a significant model for C15:0 and low-fat dairy. For C15:0 and total dairy 
intake, adjustment measurably improved the model performance (rs = 0.3, R2 = 0.1, MAE 
= 125 g/d). 

Table 6. Single-marker validation results for pentadecanoic acid (C15:0) and heptadecanoic acid (C17:0) by dairy group. 

Biomarker 

Analytical 
Platform 

(Biosample
) 

Spearman’s 
Correlation 

Coefficient (rs) 

Unadjusted GLM a Adjusted GLM a,b 

Coefficie
nt SE p-Value rap R2 MAE Coefficient SE p-Value rap R2 MAE 

Total Dairy 

C15:0 GC-MS (P) 0.17 * 
M: 0.17 (Int: 5.89) 

0.16 
(0.03) 
0.07 

(0.00 
***) 

0.02 * 
0.06  0.00 130.9 (Int: 6.08) 

0.17 
(0.07) 
0.07 

(0.00 
***) 

0.02 * 
0.31 0.10 125.4 

W: 0.13 

C17:0 GC-MS (P) 0.12 
M: 0.14 (Int: 5.89) 

0.15 
(0.03) 
0.08 

(0.00 ***) 
0.07 

−0.01 0.00 128.1 
(Int: 6.08) 

0.16 
(0.07) 
0.08 

(0.00 ***) 
0.05 

0.37 0.14 122.7 
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High-Fat Dairy 

C15:0 GC-MS (P) −0.01 
M: −0.04 (Int: 4.22) 

0.15 
(0.06) 
0.12 

(0.00 ***) 
0.21 

0.03  0.00 56.2 
(Int: 4.30) 

0.16 
(0.12) 
0.12 

(0.00 ***) 
0.20 

0.10 0.01 56.2 
W: 0.09 

Figure 2. Significantly increased plasma pentadecanoic acid (C15:0) and/or heptadecanoic acid
(C17:0) with increasing dairy intake. (a) C15:0 by quintiles of total fermented dairy intake, (b) C17:0
by quintiles of total fermented dairy intake (significance between quintiles denoted by different
letters, p ≤ 0.05), (c) C15:0 by continuous total dairy intake, (d) C15:0 by continuous low-fat dairy
intake, (e) C15:0 by continuous total fermented dairy intake, (f) C17:0 by continuous total fermented
dairy intake, (g) C15:0 by continuous low-fat fermented dairy intake, (h) C17:0 by continuous low-fat
fermented dairy intake.

The best multi-marker models for C15:0 and C17:0 derived from stepwise regression
for dairy foods and dairy groups are presented in Table S6. In the unadjusted models,
C15:0 alone was revealed to be the best predictor of intakes for all dairy groups, and
was significant for total dairy, total fermented dairy, and low-fat fermented dairy. In the
adjusted models, the best (most parsimonious) models were generated from a combination
of biomarker/covariates, and consisted of C15:0 + sex + BMI for total dairy, low-fat dairy,
and total non-fermented dairy, C15:0 + sex for total fermented dairy, and C15:0 + age for
low-fat fermented dairy. For low-fat non-fermented dairy, the best model did not include
a biomarker but was instead driven by two covariates (sex + BMI). C15:0 was positively
associated with dairy intakes in all models, while covariates were negatively associated.
In all cases, the adjusted model selected from stepwise regression had the best model
outcomes (in terms of model significance and prediction performance); however, this did
not involve a true multi-marker combination consisting of C15:0 + C17:0. It is noteworthy
that a high degree of multicollinearity between C15:0 and C17:0 was observed [variance
inflation factor (VIF) > 5, r = 0.93)].

2.7. Suitability of Biomarkers for Discriminating between Fermented and Non-Fermented
Dairy Intake

Several of the FIBs had significant positive correlations with fermented dairy intake
and/or negative correlations with non-fermented dairy intake (Table S7). In particular,
consistent correlations were observed for plasma 3-hydroxyisobutyrate (rs = 0.2 for total
fermented dairy, rs = 0.23 for low-fat fermented dairy intake, rs = −0.24 for high-fat
non-fermented dairy intake; p ≤ 0.05) and were reflected in the different levels of 3-
hydroxyisobutyrate for the different quintiles of intake for these dairy groups (Figure 3).
Other relevant markers included plasma C15:0, C17:0, galactonate, lactose, valine, galactitol,
3-phenyllactic acid, glutamic acid, isoleucine, leucine, methionine, and proline (detected
with GC-MS) (Figure 3 and Figure S7). These FIBs were included in an exploratory multi-
marker model to gauge whether their inclusion can help to better predict fermented and
non-fermented dairy intake.
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As seen in Table S8, when compared to Table S6, multi-marker models with these FIBs
improved the model performance of the majority of dairy groups compared to models
with C15:0 and/or C17:0. The best multi-marker models selected for total fermented
dairy (C15:0 + galactonate + glutamic acid + lactose + methionine + 3-hydroxyisobutyrate;
unadjusted, rap = 0.22, R2 = 0.05, MAE = 101 g/d), high-fat fermented dairy (C15:0 +
3-hydroxyisobutyrate + BMI; adjusted, rap = 0.4, R2 = 0.16, MAE = 35 g/d), and low-fat
fermented dairy (C15:0 + lactose + 3-hydroxyisobutyrate + galactonate + glutamic acid
+ methionine; unadjusted, rap = 0.25, R2 = 0.06, MAE = 93 g/d) all included significant
positive associations with C15:0. Furthermore, 3-hydroxyisobutyrate was selected in the
best model for all three fermented dairy groups: positively associated for total (non-
significant) and low-fat fermented dairy (significant), and negatively associated with
high-fat fermented dairy (significant). The best performing models for non-fermented
dairy groups included valine + 3-hydroxyisobutyrate + 3-phenyllactic acid + BMI + sex for
total non-fermented dairy (adjusted, rap = 0.02, R2 = 0.00, MAE = 93 g/d), C17:0 + isoleucine
+ leucine for high-fat non-fermented dairy (unadjusted and adjusted, rap = 0.4, R2 = 0.16,
MAE = 27 g/d), and valine + 3-hydroxyisobutyrate + 3-phenyllactic acid + sex + BMI for
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low-fat non-fermented dairy (adjusted, rap = 0.11, R2 = 0.01, MAE = 96 g/d). For total
and low-fat non-fermented dairy, 3-hydroxyisobutyrate was significantly and negatively
associated with intake in adjusted models. Furthermore, inclusion of these candidate
FIBs also improved the prediction of high-fat and low-fat dairy groups (rap = 0.27–0.5,
R2 = 0.07–0.25) (Table S8).

3. Discussion

In the current study, we aimed to evaluate the robustness of the previously-identified
candidate FIBs for milk, cheese, and yoghurt. Most of the selected biomarkers have already
shown some of the essential qualities of a FIB including plausibility and time-response in a
controlled intervention setting [18–22], but observational data in free-living populations is
limited. The single-marker models examined in this observational study did not perform
well in predicting the intake of dairy foods in our free-living population, which may be
related to the fact that these FIBs are non-specific and can be influenced by consumption of
other foods in the diet. However, we observed modest associations for multi-marker models
that also account for known covariates, suggesting that they may help better capture the
subtle differences between specific dairy foods. Moreover, our analyses illustrate several
challenges and considerations critical to further validation of these FIBs.

3.1. Biomarkers for General Dairy Intake, Dairy Food Intake, and Their Specificity

By far, the most common dietary biomarkers described in studies of dairy intake are
C15:0 and C17:0. Despite their widespread use, several limitations have been acknowl-
edged, including their non-specificity for dairy in populations with high fish intake due to
their endogenous presence in fish [13]. Furthermore, although C15:0 has been suggested to
be an effective concentration biomarker of dairy intake in controlled animal studies, only
moderate correlations have been reported in human observational studies [25]. Due to these
limitations, as well as the inability of these biomarkers to discriminate between specific
dairy foods, the identification of further FIBs for dairy products is a valuable endeavour. A
previous systematic review on biomarkers of dairy products identified several plausible
FIBs of total dairy intake, including serum C15:0, C17:0, C17:1, myristoyl-sphingomyelin
SM (d18:1/14:0), and galactonate, as well as urinary isovalerylglutamic acid, isovaleryl-
glycine, tiglylglycine, and isobutyrylglycine for cheese intake [26]. No specific biomarkers
were identified for yoghurt consumption.

In the present study, we evaluated the association of C15:0 and C17:0 in fasting plasma
with dairy intake, the results of which helped contextualize the associations and validation
performances of the other FIBs. Although associations were generally low (rs = 0.16–0.24),
they were comparable to observational studies with similar study designs (r = 0.1–0.36) [27–29].
Other FIBs we aimed to evaluate for milk, cheese, and yoghurt [19–22] were mainly non-
significant, or if significant, yielded weak positive associations. This may be partly due to
the presence of the FIBs or their parent compounds in different foods. For instance, while
lactose is the predominant carbohydrate in milk, its presence in commonly-consumed
processed foods containing milk ingredients may obscure the specificity of lactose and its
metabolites for assessing milk intake [30]. Additionally, the majority of FIBs for cheese
and yoghurt (peptides, amino acids, and their intermediates) can also be influenced by
the consumption of a large variety of protein-rich foods in the diet. The single-marker
validation of these non-specific FIBs in a free-living population presents a tremendous
challenge, but their inclusion in a multi-marker panel appears to be more promising.

3.2. Single- versus Multi-Marker Models for Evaluating the Robustness of FIBs

Since milk is a complex mixture of macronutrients, micronutrients, minerals, and
bioactive compounds, it is intuitive to seek out multiple biomarkers to capture and dis-
criminate the intake of milk and dairy products. By using regression models, we could
assess and compare the ability of single- vs. multi-marker approaches in predicting in-
take of specific dairy foods and dairy groups. Selected physiological covariates that can
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affect and/or be affected by the choice of dairy food consumed as well as absolute intake
levels and patterns of consumption (sex, age, and BMI) [31] were also included in the
biomarker models.

In our models, C15:0 performed better than C17:0 for predicting general dairy intake
in both single- and multi-marker models, confirming what has been previously observed
in the literature. From the single-marker models, urinary lactose, galactose, and galactitol
were the most effective FIBs in predicting milk intake (better than C15:0 or C17:0), while two
adjusted multi-marker models (galactose + galactitol + age + sex + BMI; indole-3-propionic
acid + tryptophan + sex) offered slightly improved prediction performance. Galactose,
galactitol, and tryptophan were positively associated with milk intake in these models, but
indole-3-propionic acid (a deaminated metabolite of tryptophan) was negatively associated
with milk intake. While milk consumption previously generated a significant postpran-
dial increase in indole-3-propionic acid [21], it was not detected in milk, suggesting that
indole-3-propionic acid may have been synthesized from tryptophan in milk by the gut
microbiota [32].

A significant multi-marker model consisting of plasma C15:0, isoleucine and glutamic
acid captured cheese intake, whereas no significant single-marker models were generated.
As cheese products tend to be higher in dairy fat (compared to milk and yoghurt), it is not
surprising that C15:0 was selected in the multi-marker model for cheese. Similarly, glutamic
acid has been previously reported as the primary compound responsible for the ‘umami’
taste quality of cheese products [33]. Conversely, isoleucine is ubiquitous in the diet, and
cheese consumption may not have been sufficient to impact isoleucine levels significantly.
This is reflected in the non-significant but negative correlation between plasma isoleucine
and cheese intake, and the negative association in the regression model. For yoghurt intake,
no significant single-marker models were generated. A significant adjusted multi-marker
model comprising threonine and tyrosine was generated for yoghurt intake, however, the
model performance was low, perhaps due to the non-specific nature of the panel of FIBs
for yoghurt (primarily amino acids).

3.3. Evaluation of Other Facets of Validity

In the case of non-specific biomarkers, a major factor affecting intake-biomarker
associations is the quantity of food consumed. The Netherlands has one of the highest
per capita dairy consumption, which makes our population highly suitable for evaluating
dairy biomarkers. However, within dairy foods, consumption of cheese was comparatively
lower than consumption of milk in our population (median ~ 27 vs. 87 g/d), with a
narrower range of intakes (8 to 67 g/d vs. 4 to 303 g/d in Q1 to Q5). This can affect the
ability of FIBs to discriminate between individuals with high or low intakes, and blurs
the dose-response relationship. Although true dose-response could not be evaluated in
our study, we observed significant increases in multiple FIBs across quintiles of dairy food
intake, in particular, urinary galactitol for milk intake. Several FIBs also showed apparent
sex-related responses in the stratified quintile analysis and correlations. These findings
could be affected by the differences in numbers of participants between sexes, which may
have afforded higher statistical power in men (n ~ 33 per quintile) rather than women
(n ~ 16 per quintile).

We also acknowledge that the composition of (bovine) milk can be affected by animal
grazing conditions, which could lead to seasonal variations in levels of biomarkers in the
blood or urine. A study conducted in the Netherlands reported that the most pronounced
differences in milk composition were in fatty acid concentrations (decrease in saturated
fatty acids and increase in trans fatty acids during the grazing season, ~April–September),
while lactose and protein composition remained relatively stable [34]. Similar effects on
other metabolites/biomarkers are unknown.

Other validation criteria of reliability, stability, analytical performance, and repro-
ducibility could not be sufficiently addressed here, but a few related considerations are
worth noting. For biomarker discovery, the combined use of multiple metabolomics an-
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alytical platforms (e.g., LC-MS, GC-MS, and NMR) permits complementary coverage of
the metabolome and is particularly valuable for identifying unique sets of FIBs based on
individual platform strengths [23]. For validation, targeted platforms are often favoured,
to quantify a limited panel of compounds but often with improved methodology for a
specific compound class. In the case of dairy fatty acids (including C15:0 and C17:0), the
most widely used methodology for their separation and analysis is a targeted, quantitative
method using chromatography-flame ionization detector (GC-FID) [35]. Thus, further
method development and quantitative analyses of these fatty acids as well as other FIBs
for milk, cheese, and yogurt may improve their performance for estimating dairy (food)
intake in a multi-marker model, along with their reliability and analytical performance.

Another important consideration consequential for successful FIB validation is that the
choice of biosample may reflect a different time-course associated with intake. Long-term
fat intake is best measured using adipose tissue (1–2 years), whereas short-term intake
is best assessed using serum phospholipids or cholesteryl esters (past several days) and
triglyceride fractions (past several hours) [36–38]. In the present study, we used fasting
plasma and 24-h urine samples that were banked and readily available for analysis. FIBs
with short half-lives in plasma were unsurprisingly not significant. For example, in the
metabolomics study of yoghurt intake, significant increases in several compounds were
observed in postprandial plasma, but almost all were not significant in fasting serum after
daily yoghurt intake for two weeks [21]. For metabolites measured in both plasma and
urine (e.g., lactose, Blood Group H disaccharide), higher relative abundance was observed
in urine samples that were collected over 24 h whereas levels were almost undetectable in
plasma samples collected under fasting conditions. While these FIBs may not be suitable as
markers of habitual intake of dairy foods, they may still be valid as markers of short-term
or recent intake. Therefore, further exploration of the FIBs outlined in this study in several
other independent observational and intervention studies using samples with different
time courses would help assess their robustness as short-term biomarkers.

3.4. Influence of Fat Content and Fermentation on Dairy Biomarkers

One objective in the current study was to explore the potential influence of food-related
factors on the efficacy of dairy biomarkers, in particular fat content and fermentation status.
Our analyses revealed significant positive associations between plasma C15:0 with total
and low-fat dairy intake, and between C15:0 and C17:0 with total and low-fat fermented
dairy intake, but similar anticipated results were not observed for high-fat dairy groups.
One explanation could be the generally lower consumption of high-fat dairy products (Q1:
10 g/d to Q5: 135 g/d) compared to low-fat dairy products (Q1: 43 g/d to Q5: 480 g/d)
in our population. While lower intakes inherently translates to lower concentrations of
candidate FIBs in biofluids, the group of high-fat dairy foods also tended to include more
sporadically consumed products (e.g., cream with hot meal, whipped cream, milk-based
ice cream). A combination of these factors can introduce variability and error. Further,
there is a small possibility that these fatty acids are enriched in fermented dairy products,
as fermentation of milk has been shown to impact the fatty acid profiles of cheese and
yoghurt products [39].

From our exploratory analyses assessing the suitability of FIBs for discriminating
between fermented and non-fermented dairy intake, a significant positive association was
found between 3-hydroxyisobutyrate and total fermented dairy and low-fat fermented
dairy intake, and simultaneously inversely associated with high-fat non-fermented dairy as
well as high-fat non-fermented intake, suggesting an overall positive association between
this FIB and fermented dairy. This association was also partly reflected in the multi-marker
models for fermented and non-fermented dairy groups, although not fully confirmed as the
direction of association of 3-hydroxyisobutyrate with the various dairy groups presented a
complex pattern. Further, 3-Hydroxyisobutyrate is synthesized in the rumen of dairy cattle
via the action of butyrate-producing bacteria, and also in ketogenesis as a catabolic product
of valine [40]. Further studies are needed to strengthen the biological plausibility of this
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finding, and drive efforts to identify FIBs related to fermentation that will help elucidate
the underlying mechanisms for fermented dairy consumption and cardiometabolic health.

3.5. Influence of Genetic Variants on Biomarkers of Milk Intake

Genetic polymorphisms in key enzymes leads to inter-individual variability in the
metabolism of a compound, thereby impacting its efficacy and limiting its capacity as
a quantitative biomarker. For dairy foods, a dominant mutation in the lactase enzyme
(especially LCT-13910 C > T) is critical for lactose metabolism in adulthood [41]. The
global prevalence of lactase persistence is highly geographically dependent (e.g., <1% in
Asia, >90% in Northern Europe) [41], and in our study population comprising primarily
Caucasian Dutch adults, the level of lactase persistence was very high (~95%). This resulted
in an uneven distribution between LP and LNP individuals (104 vs. 6), and the effects of
lactase persistence on the efficacy of lactose metabolites as FIBs of milk intake could not
be evaluated in this study with sufficient statistical power. However, in studies involving
larger populations or comprising different ethnic populations, the presence of these genetic
variants may be magnified, which could affect the predictions/accuracy of these FIBs and
warrants careful consideration.

We also previously observed high inter-individual variation in two Lewis system-
related oligosaccharides, Lewis A trisaccharide and Blood Group H disaccharide, identified
as potential FIBs of (bovine) milk intake [20]. In humans, the production of these fuco-
sylated oligosaccharides is determined by expression of the FUT2 and FUT3 genes [20].
The majority of individuals with functional FUT2 are deemed ‘secretors’, while those who
inherit a homozygous loss-of-function mutation are deemed ‘non-secretors’ [42]. The non-
secretor phenotype (~20% of Caucasians) has been associated with higher susceptibility to
various gastrointestinal diseases and infections [42–45]. Non-secretors with a functional
FUT3 enzyme can still express Lewis A antigens, but in rare cases, mutations of both
FUT3 alleles results in the Lewis negative phenotype (6%) [20,42]. In the present study,
a comparable prevalence of secretors, non-secretors, and Lewis negative was observed
(79%, 17%, and 4%, respectively). As expected, significantly higher urinary Blood Group H
disaccharide was found in FUT2 secretors; an increase was also observed in plasma but
was only of borderline significance, presumably due to low overall concentrations. These
metabolites were not found to be discriminant for milk intake in our study, which could be
attributed to their largely endogenous origin; nonetheless, attention in larger studies will
help clarify their classification and impact as FIBs for milk.

3.6. Study Limitations

There are several limitations worth noting. Firstly, based on the data available, we
relied on a window of ±14 days between biosample collection and the completion of an
FFQ, which assesses habitual intake of the previous month. This assumes that dietary
consumption patterns the day prior to biosample collection were comparable to the re-
ported intakes, but otherwise, would be a source of measurement error. Secondly, since
the FIBs were identified as part of a larger non-targeted study, we relied on metabolite
relative abundances instead of absolute quantitative data for the validation, which limits
the ability for data integration between analytical platforms. Thirdly, like other studies in
metabolomics epidemiology, we used pre-existing biosamples from large observational
studies that were not originally designed for the purpose of metabolomics analyses, and
sample incubation time could influence levels of certain metabolites. Fourthly, the dairy
products administered in the intervention studies where the FIBs were derived from may
have a different compositional profile than those consumed in the free-living cohort. In the
particular case of cheese, all FIBs were identified following consumption of Swiss Gruyère
cheese, whereas consumption of Dutch cheeses (Edam, Gouda) are predominant in the
current study population. Finally, we relied on generalized linear and stepwise regression
models for comparing single- and multi-marker validation results, and in particular, for
determining the predictive ability of the FIBs. Aside from limitations inherent to regression
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models (e.g., multicollinearity), we acknowledge that these FIBs may perform better in
predicting ranked intakes or binary outcomes (i.e., extreme quintiles). Since we wanted
to evaluate the robustness of these biomarkers using the full population, we used a con-
tinuous approach, which also permitted comparison to previous studies conducted for
C15:0/C17:0. Further use of quantitative data for the strongest biomarker models will
further assess agreement between biomarker-based and subjective reporting methods.

4. Materials and Methods
4.1. Study Population

The Nutrition Questionnaires Plus (NQplus) study is a prospective cohort study that
was conducted in Dutch adults (primarily Caucasian, 20 to 70 years), living in or around
Wageningen (the Netherlands). NQplus was initiated as an ‘add-on’ study to the National
Dietary Assessment Reference Database (NDARD) project, to gather extensive data on
participant demographics, lifestyle, medical history, and cardiometabolic health outcomes.
A complete description of NQplus and NDARD has been provided elsewhere [46,47].
Briefly, 2048 men and women were recruited and included in the study between June 2011
and February 2013. Baseline measurements included an assessment of habitual dietary
intake by FFQ and/or 24-h recall. Background demographics, health, anthropometric, and
lifestyle data, along with fasting blood samples [total collected: EDTA plasma (6 × 0.5 mL +
1 × 1.5 mL), citrate plasma (5 × 0.5 mL), serum (3 × 0.5 mL + 2 × 1 mL) and one buffy coat
sample] and 24-h urine samples (mean ± SD weight: 2282 ± 814 g), were also collected.
All biosamples were stored in the biobank at −80 ◦C for future analysis. All measurements
were performed according to a standardized protocol by trained research personnel. The
study was approved by the ethical committee of Wageningen University and Research
(protocol number NL34775.081.10) and conducted in agreement with the Declaration of
Helsinki. Written informed consent was obtained from all participants prior to the start of
the study.

Metabolomics analyses were performed on a sub-cohort of NQplus participants
(n = 531), including participants with ‘complete’ dietary data (completion of one FFQ
and at least two 24-h recalls) as well as a biosample collected within 14 days of completing
either a FFQ or a 24-h recall. For the present study, we report on n = 246 participants
who had a biosample collected within ±14 days of completing a FFQ (228 plasma and
216 urine samples). This criterion ensured that biosample collection occurred within the
FFQ reference period of one month, providing an assessment of typical dietary intake that
is not as sensitive to fluctuations in daily intake as repeated 24-h recall assessments.

4.2. Food Frequency Questionnaire and Levels of Dairy Food Consumption

A full description of the FFQ used to assess habitual dietary intake has been described
in the study design papers for NQplus and NDARD [46,47]. The FFQ was self-administered
and completed online using the open-source survey tool LimeSurvey (LimeSurvey Project
Team/Carsten Schmitz, Hamburg, Germany), with ten frequency categories ranging from
‘never’ to ‘6–7 days per week’. Portion sizes were estimated using commonly used house-
hold measures. Total food intake (in g/d) was determined by multiplying consumption
frequency by portion size as defined in the Dutch food composition tables [48]. The ma-
jority of FFQ assessments were completed in the spring (n = 129) and summer (n = 94)
months, with fewer assessments performed in the autumn (n = 9) or winter (n = 14) months.
Although the intake levels of some dairy foods could be dependent on season, we did
not observe a consistent trend for such differences. Out of 216 total food items in the
FFQ, 39 were identified as dairy products, which were further classified into milk, cheese,
yoghurt, cream, butter, buttermilk, quark, and ice cream subgroups (Table S9). This FFQ
has been previously validated for energy, fat, and various nutrients and food groups [49–51],
including milk, yoghurt, cheese, total fermented dairy, and total non-fermented dairy
(against multiple 24-h recalls) [52], which were used in the current study for evaluation of
the respective candidate FIBs.
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In addition, to evaluate the performance of C15:0, C17:0, and various biomarkers on
dairy groups, a total dairy group was calculated from the combined intakes of all dairy
products, a total fermented dairy group was calculated from the combined intakes of all
fermented dairy products in the FFQ, and a total non-fermented dairy group was calculated
from the combined intakes of all non-fermented dairy products in the FFQ. Ingredient lists
of common grocery store items were consulted (where necessary) to ensure that specific
dairy foods were truly fermented, and composite dishes containing a fermented dairy
ingredient (e.g., pizza with cheese) were excluded, as previously described [52]. Total dairy,
fermented dairy, and non-fermented dairy groups were further stratified into high-fat
groups, which included all full-fat dairy products, and low-fat groups, which included
semi-skim and skim dairy products (Table S9). Fat content (g/100 g) for all dairy products
was determined based on the values reported in the Dutch Food Composition Table [48]
and classifications of products as skim, semi-skim, and full-fat were based on the guidelines
set by the Dutch Dairy Commodities Act (see Table S9).

4.3. LC-MS Sample Preparation and Analysis

Plasma and urine samples were analyzed using liquid chromatography-mass spec-
trometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS). All samples
were thawed on ice and kept at 4 ◦C during analysis. Prior to LC-MS analysis, phos-
pholipids were removed from plasma samples to limit ion suppression using the Phree
filter (Phenomenex Inc., Torrance, CA, USA). Urine samples were normalized based on
the specific gravity as determined by the refractive index (refractometer RE40, Mettler
Toledo, Switzerland), as described in Pimentel et al. [20]. Briefly, urine samples were
centrifuged at 1800× g for 10 min at 4 ◦C. The supernatant was then diluted using milliQ
water to a specific gravity of 1.0008 to ensure that sample measurement occurred within
the linear dynamic range of the machine. LC-MS metabolomics analysis was performed
using the UltiMate 3000 RS UPLC system (Thermo Fisher Scientific, Waltham, MA) with
a Waters Acquity UPLC HSS T3 column (length 150 mm, diameter 2.1 mm, particle size
1.8 µm), coupled with the maXis 4G + quadrupole time-of-flight mass spectrometer (Bruker
Daltonik GmbH, Bremen, Germany). We ran a gradient from 5% to 95% of mobile Phase A
within 15 min at 0.4 mL/min. Mobile Phase A consisted of Milli-Q water with 0.1% formic
acid and mobile Phase B consisted of acetonitrile with 0.1% formic acid. The column was
heated to 35 ◦C with a post column cooler set to 25 ◦C. The resulting system pressure was
~600 bar, dependent on the actual composition of the mobile phase at the specific time. The
mass spectrometer electrospray interface was operated in positive ion mode and spectra
were recorded from 75 to 1500 m/z. Collision-induced dissociation was performed using
energies from 20 to 70 eV. A total of 5 uL of de-phosphoralized plasma or normalized urine
from each sample were injected. All samples were injected once. Quality control (QC) pools
were prepared from plasma or urine samples by mixing all samples of each sample type at
equal volume. QC samples were injected at five sample intervals for signal drift correction.
Blanks (consisting of ultrafiltered LC-MS-grade water) were also injected at the beginning
and end of each batch for detection of contaminants. Progenesis QI (v.2.3.6198.24128, Non-
Linear Dynamics Ltd., Newcastle upon Tyne, UK) was used for retention time correction,
peak-picking, deconvolution, adducts annotation, and normalization (default automatic
sensitivity and without minimum peak width). The intensity and the detection limit of
the candidate FIBs was also performed by Progenesis QI with the setting “default”. The
software does not limit the detection at a certain intensity, but respects the noise level and
presence of an isotopic pattern.

4.4. GC-MS Sample Preparation and Analysis

Plasma and urine samples were prepared for GC-MS analysis as previously de-
scribed [19,22]. Urine samples were normalized prior to analysis using the refractive index
methods described above for the LC-MS analysis. For each 100 µL plasma sample, 50 µL of
an internal standard solution (labelled D-fructose, U-13C6, 99%, Cambridge Isotope Labo-
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ratories, Inc., Cambridge, UK, c ≈ 0.16 mg/mL in water) was added, followed by precipita-
tion with 300 µL cold methanol, centrifugation, transfer of supernatant (370 µL), and drying
using a vacuum centrifuge. For each 100 µL urine sample, 50 µL of an internal standard so-
lution (labelled D-fructose) was added and dried using a vacuum centrifuge. The samples
further underwent a two-step derivatization (methoximation with O-methylhydroxylamine
hydrochloride followed by silylation with N-methyl-N-(trimethylsilyl)trifluoroacetamide
(MSTFA)) and subjected to analysis on a GC-MS 7890B/MS5977A (Agilent Technologies,
Santa Clara, CA, USA) with a CombiPAL autosampler (CTC-Analytics AG, Zwingen,
Switzerland) and a DB-5 ms fused silica capillary column (60 m, 0.25 mm i.d., 0.25 µm
film thickness, Agilent Technologies, Basel, Switzerland). The samples were injected using
a multimode injector according to the following temperature program: initially 90 ◦C,
heating rate 900 ◦C/min until 280 ◦C, hold for 5 min and cooled at rate of −30 ◦C/min,
and kept at 250 ◦C. The oven program was as follows: initial temperature 70 ◦C for 2 min,
increase up to 160 ◦C at a rate of 5 ◦C/min, increase to 300 ◦C at a rate of 10 ◦C/min,
which was held for 36 min, equilibration time 1 min. MS detection mass ranged from 28.5
to 600 Da, MS source temperature was 230 ◦C, and MS Quad temperature was 150 ◦C.
Electron ionization was performed with 70 eV. QC samples were prepared beforehand by
mixing all plasma samples at equal volumes. Each batch was initiated by five injections of
QC samples for equilibration and after every fifth plasma sample a fresh QC was injected.
At start and end of each batch, a blank sample (milliQ water) was included. QC samples
and blank samples underwent the same sample preparation as plasma samples.

Agilent data files acquired from GC-MS analysis were deconvoluted and converted
into CEF files using Agilent Masshunter Profinder (Agilent Technologies, Santa Clara, CA,
USA). Data files were further processed in Agilent Mass Profiler Professional (Agilent
Technologies, Santa Clara, CA, USA) to perform, alignment and compound identification.
In the resulting list containing the deconvoluted features, features with retention time before
10 min were removed (reagents region). All markers selected based on deconvoluted data
were further evaluated using a targeted approach in order to optimize integration. Using
RI, quantifier and qualifier ion retrieved from deconvoluted data, the suggested markers
were analyzed in MassHunter Quantitative Analysis (Agilent Technologies, Santa Clara,
CA, USA). The peak integration was checked in each sample individually. Responses
from the quantifier ion of marker compounds were normalized with the response of the
quantifier ion of internal standard labelled d-Fructose Peak 1 (ion 279).

4.5. Previously-Identified Candidate Biomarkers, Analytical Standards and Reagents

Candidate FIBs for milk, cheese, and yogurt were previously identified in serum and
urine using non-targeted metabolomics, where the most discriminant FIBs were selected
using Projections to Latent Structures Discriminant Analysis (PLS-DA) (details and figures
reported elsewhere) [19–22]. A list of these FIBs is provided in Table S3. Where possible, we
aimed to evaluate these previously-identified candidate FIBs for milk, cheese, and yoghurt
in the biosample and using the same analytical platform by which they were originally
identified. FIBs that were previously identified in serum were targeted in plasma. FIBs that
were previously identified using NMR could not be assessed by the same platform in the
present study; thus, we used GC-MS as a substitution platform for the identification of
most of these FIBs. All solvents and reagents for metabolomics analysis were purchased
from Sigma-Aldrich Chemie GmbH (Buchs, Switzerland).

For LC-MS, the Human Metabolome Database [53] and the National Institute of Stan-
dards and Technology database (NIST v14) were used to screen the identity of metabolites
with a 10 ppm mass accuracy threshold. Compound identities were then confirmed with
the injection of authentic standards with a RT window of 20%. A list of all standards sup-
pliers is provided in Table S10. For GC-MS, an internal database was used for identification
of targeted biomarkers. In the case that stereoisomeric forms of selected discriminating
features were identified, the peak with higher response was further evaluated. Details of
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the identification features of compounds analyzed from LC-MS and GC-MS are presented
in Tables S11 and S12, respectively.

4.6. Determination of Lactase, FUT2, and FUT3 Expression

Since the digestion of lactose and levels of lactose metabolites (galactose, galactonate,
galactitol, galactono-1,5-lactone) are dependent on the presence of a functional lactase
enzyme in adults [24], we evaluated the prevalence of the lactase persistent genotype
in our population, and its influence on the utility of lactose metabolites as FIBs of milk
intake. Similarly, the status of galactoside 2-alpha-L-fucosyltransferase 2 (FUT2) and galac-
toside 2-alpha-L-fucosyltransferase 3 (FUT3) enzymes, which determines the secretion of
blood group antigens Lewis A trisaccharide and Blood Group H disaccharide that were
previously proposed as candidate FIBs for milk intake [20], were also evaluated. We uti-
lized whole-genome sequencing data that was performed for 737 NQplus participants, of
which n = 110 overlapped with our validation sub-cohort. DNA was extracted from the
blood samples of these participants using a Puregene 5Prime kit (Qiagen, Germantown,
MD, USA) and sequenced using the Illumina OmniEspress chip (Illumina Inc., San Diego,
CA, USA). We screened the single nucleotide polymorphisms (SNPs) data that was ob-
tained through sequencing against a comprehensive list of SNPs associated with lactase
persistence in the literature [54–60], which encompassed the common known functional
SNPs rs4988235, rs182549, and rs41380347, as well as a number of rare variants (acces-
sion numbers: rs41456145, rs145946881, rs41525747, rs869051967, ss820496565, rs4988233,
rs527991977, rs4954492, rs56348046, rs4954490, rs759157971). In addition, known SNPs for
the FUT2 (rs601338, rs1047781, rs281377, rs200157007) and FUT3 (rs28362459, rs3745635,
rs3894326, rs812936, rs778986) genes were also screened. From the screening, rs4988235
(13910C > T) was identified among the SNPs of the LCT gene and rs182549 (22018G > A)
was identified for the upstream MCM6 gene, both influencing lactase status, while rs601338
(G428A) was found for FUT2 and rs778986 (C314T) for FUT3. Phenotypes for lactase
(persistent and non-persistent) and FUT2/FUT3 status (secretors, non-secretors, and Lewis
negative) were determined based on the SNPs.

4.7. Statistical Analysis

Participant characteristics are shown for the total population as well as stratified
for sex as mean (SD), median (IQR) or n (%). Exploratory analyses were performed and
metabolomics sample outliers, defined as observations clearly falling outside Hotelling’s
T2 tolerance eclipse (95% confidence interval) in the principal component analysis (PCA)
score plot, were identified and excluded (n = 23 LC-MS plasma, n = 2 LC-MS urine, and
n = 24 GC-MS plasma).

Differences in levels of FIBs by quintiles of intake for dairy groups and dairy foods
(for the total population, and sex-specific) were assessed by a Kruskal-Wallis test followed
by a post-hoc Conover-Iman pairwise comparison test (p ≤ 0.05 as significance threshold).
Spearman’s correlation coefficients (rs) were generated to analyse metabolite levels by
continuous energy-adjusted g/d intakes (for the total population and by sex). Correlation
coefficients of ≥0.50 were considered to be good, 0.20 to 0.49 as acceptable, and <0.20 as
poor [61]. In addition, generalized linear models (GLM) with quasi-Poisson distribution
were used to evaluate the performance of the candidate biomarkers in a ‘single-marker’
model in predicting the intake of different dairy foods. To avoid the use of negative
values in the GLM, energy-adjusted intakes of dairy foods (g/d) were first offset by adding
the minimum absolute intake value to all intake values of a food. Since the metabolite
concentrations were compositional (i.e., they are expressed as relative abundance), we
normalized metabolite concentrations prior to analysis using a centered log ratio (CLR)
transformation [62–64]. CLR transformation was performed for the metabolite data using
compositions R package (v2.0-0) [65].

To evaluate whether a ‘multi-marker’ panel consisting of a combination of FIBs per-
formed better than single FIBs in predicting intakes, stepwise regression models (forwards
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and backwards) were generated for biomarkers per platform and per biosample for milk,
cheese, and yoghurt. For dairy groups (total dairy, fermented dairy, non-fermented dairy,
and their high- and low-fat variations), a combination of plasma C15:0 and C17:0 was inves-
tigated. Further, FIBs with significant spearman’s correlations rs > 0 for intake of fermented
dairy products (total, high-fat, and low-fat fermented dairy, cheese, yogurt) and rs < 0 for
intake of non-fermented dairy products (total, high-fat, and low-fat non-fermented dairy,
milk) were further modelled using stepwise regression and a multi-marker approach to
investigate which FIBs can help distinguish between fermented and non-fermented dairy
intake. The best multi-marker models were selected based on the lowest quasi-Akaike
Information Criterion (qAIC) value determined using the R package MuMIn (v1.43.17) [66]
and presented in this paper. Multicollinearity of biomarkers were evaluated using the vari-
ance inflation factor (VIF), where VIF > 5 indicates potentially severe correlation between
predictor variables, as confirmed/verified by pairwise correlations between biomarkers.
In multi-marker models where high multicollinearity between several variables were
observed, colinear variable(s) with the highest VIF were removed. Several categorical
covariates were also added to adjust the regression models (0, 1): sex (male, female), BMI
(normal weight < 25 kg/m2, overweight/obese ≥ 25/m2), and age (<55 years, ≥55 years
(median split)).

For cross-validation of both the single-marker and multi-marker models, the dataset
was randomly split into training (80%) and test datasets (20%). Spearman’s correlations
between the actual and predicted values (rap) were calculated to assess the strength and
direction of the associations between these data, and performance accuracy of the models
was further assessed by a coefficient of determination (R2) and mean absolute error (MAE),
which was determined using the R package MLmetrics (v1.1.1) [67]. All statistics were
performed in R (Version 3.6.3) [68]. For all models, the level of significance was set at
p ≤ 0.05.

5. Conclusions

Multi-marker models factoring in several common physiological covariates was better
able to capture the intakes of dairy products, including milk and cheese, over single-marker
models. For yoghurt, prediction of intakes from both single- and multi-marker models
were poor due to lack of specificity of the FIBs, or endogenous origin. Further evaluation
of these FIBs as short-term biomarkers, quantification of these FIBs, and discovery of new
fermentation biomarkers for dairy foods may help to improve estimates of dairy food
intake and disentangle the health effects of dairy foods with different properties.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo11060395/s1, Table S1: quintiles of intake for dairy groups and dairy foods in men
(n = 165), Table S2: quintiles of intake for dairy groups and dairy foods in women (n = 81), Table S3:
previously-identified candidate FIBs for milk, cheese and yogurt with their platforms and biosam-
ples of detection, Table S4: multi-marker validation results for previously-identified candidate FIBs
for milk, cheese, and yoghurt (unadjusted models), Table S5: multi-marker validation results for
previously-identified candidate FIBs for milk, cheese, and yoghurt (adjusted models), Table S6:
multi-marker validation results for pentadecanoic acid (C15:0) and heptadecanoic acid (C17:0) by
dairy group, Table S7: significant spearman’s correlations for fermented and non-fermented dairy
groups, Table S8: multi-marker validation results for FIBs differentiating between fermented and
non-fermented dairy intake by dairy group, Table S9: classification of dairy foods in the NQplus food
frequency questionnaire, Table S10: list of suppliers of analytical standards, Table S11: identification
features of compounds analyzed by LC-MS, Table S12: identification features of compounds ana-
lyzed by GC-MS, Figure S1: differences in metabolite levels by sex-specific quintiles of milk intake,
Figure S2: levels of lactose metabolites, Figure S3: levels of Lewis system-related oligosaccharides
by secretion status, Figure S4: differences in metabolite levels by sex-specific quintiles of cheese
intake, Figure S5: differences in plasma levels of tyrosine by sex-specific quintiles of yoghurt intake,
Figure S6: differences in plasma levels of heptadecanoic acid by quintiles of total non-fermented

https://www.mdpi.com/article/10.3390/metabo11060395/s1
https://www.mdpi.com/article/10.3390/metabo11060395/s1


Metabolites 2021, 11, 395 26 of 29

dairy intake, Figure S7: plasma FIBs positively correlated with fermented dairy intake and negatively
correlated with non-fermented dairy intake.
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