

EGU23-14773, updated on 07 Dec 2023 https://doi.org/10.5194/egusphere-egu23-14773 EGU General Assembly 2023 © Author(s) 2023. This work is distributed under the Creative Commons Attribution 4.0 License.

Traditional livestock enclosures are greenhouse gas hotspots in the African savanna landscape: The case of a rangeland in Kenya

Sonja Leitner¹, Victoria Carbonell^{1,2,3}, Klaus Butterbach-Bahl³, Matti Barthel², Rangarirayi Lucia Mhindu^{1,4}, Paul Mutuo¹, Nina Buchmann², and Lutz Merbold⁵

¹Mazingira Center, International Livestock Research Institute (ILRI), Nairobi, Kenya (s.leitner@cgiar.org)

²Department of Environmental System Sciences, Institute of Agricultural Sciences, ETH Zurich, Universitaetsstrasse 2, 8092 Zurich, Switzerland

³Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany

⁴Department for Land and Water Resources Management, Midlands State University, P Bag 9055, Gweru, Zimbabwe ⁵Integrative Agroecology Group, Agroecology and Environment Division, Agroscope, Reckenholzstrasse 191, 8046 Zurich, Switzerland

There is hot debate about whether grassland-based livestock production can be climate-smart or not. Greenhouse gas (GHG) emissions from livestock (primarily from enteric methane [CH₄] and manure CH₄ and nitrous oxide [N₂O]) stand vis-à-vis vegetation CO₂ uptake and soil carbon sequestration. In sub-Saharan Africa (SSA), livestock are a precious good that ensures the livelihoods of millions of people, which often belong to marginalized groups such as pastoralists. To protect their animals from predation and theft, livestock are secured in overnight enclosures ("bomas" in Kiswahili), which form the center of many pastoral settlements. However, in these enclosures manure accumulates for months or even years, making them a potential hotspot for GHG emissions. Here, we present the first year-long measurements of GHG emissions from active and inactive (abandoned) bomas from an African rangeland at the ILRI Kapiti Research Station in Kenya.

We found that active bomas were continuous sources for CO₂, CH₄ and N₂O emissions, with flux peaks of up to 1940 mg CO₂-C m^{D2} h^{D1}, 1600 µg N₂O-N m^{D2} h^{D1}, and 6690 µg CH₄-C m^{D2} h^{D1}. Even after their abandonment, fluxes from bomas continued to be elevated compared to savanna soil background emissions for all GHGs. When calculated over a full year and put in context with manure deposition rates into the bomas (GHG emission factors), we found that 12.6 ± 5.3 % manure-C was emitted as CO₂, 2.4 ± 0.4 % manure-N was emitted as N₂O, and 0.5 ± 0.1 % manure-C was emitted as CH₄. GHG emissions from active bomas were not affected by rainfall seasonality or temperature, presumably because the moisture content of the fresh manure was always high due to urine input, and because temperature did not vary much during the year. In abandoned bomas, GHG emissions during the wet season.

The high N₂O and CH₄ emissions we found have implications for global GHG inventories, which

currently do not have a category for overnight livestock enclosures and therefore do not account for these emissions. Furthermore, hotspots for GHG emissions such as these livestock enclosures need to be included to assess the full GHG budget of pastoral livestock systems and to develop management interventions for low-emission livestock production in developing countries.