

Design of an indicator-based agrienvironmental direct payments system inspired by the LCA methodology

Andreas Roesch & Anina Gilgen Agroscope Life Cycle Assessment research group Zurich, Switzerland

LCA food, 13 October 2022

Introduction

Swiss government has agri-environmental goals

=> Promotion of sustainable and resource-efficient agricultural production

Current system of direct payments

- 1. Conservation of natural ressources
- 2. Promotion of particularly environmentally friendly production

...results in

Stagnation since ~ year 2000

- Agri-environmental goals not yet achieved ->
 - => launch of project IDPS (Indicator-based Direct Payment System)

IDPS: Indicator-based Direct Payment System

Goals

- ➤ Elaborate suggestions enhancing the current system of direct payments to achieve agri-environmental goals
- ➤ Analysis of degree to which indicator-based frameworks can offer added value to agricultural policy

Procedure

- (1) Develop indicators to assess environmental impacts (at farm level), functional unit: ha
- (2) Specify damage costs (social costs)
- (3) Derive payments from indicator values and damage costs
- (4) Implementation in the model SWISSland to evaluate changes in farm structure (livestock, crops,..)

O

Concept

Indicators...

- √ "summarize"/ simplify complex information
- ✓ have to be applicable to all farm types
 and locations
- ✓ have to be valid and reproducable
- ✓ should be based on verifiable input data

IDPS must...

- ✓ aim at a compromise between accuracy/ completeness
 and feasability (implementation, controllability)
- ✓ account for policy-driven context:
 - verifiable input data
 - accepted by stakeholders
 - easy understandable for stakeholders

Development of indicators: LCA-thinking

Procedure (example: how to approximate)

- Classification: identification of most important GHG from agricult. sector
- 2) Definition of elementary flows: Selection of five emission sources/sinks:
 - (i) methane (CH₄) emissions from ruminants by enteric fermentation
 - (ii) nitrous oxide (N_2O) emissions from agricultural soils
 - (iii) emissions from drained organic soils
 - (iv) carbon stored in trees
 - (v) CH₄ & N₂O emissions from stored slurry
- 3) LCI modelling: Parameterize process (use key driving variables)
- 4) Characterisation: CF_{N20}=265 & CF_{CH4}=28
- 5) Normalization: used for translation into payments (national mean)

IDPS: 3 variants of different complexity

detailed	medium	simple
GHG emissions	GHG emissions	
ammonia emissions	ammonia emissions	climate & nutrients
nitrate leaching	nitrate leaching	
P leaching		
plant protection products	plant protection products	plant protection products
erosion	erosion	soil protection
soil organic carbon	soil organic carbon	
biodiversity	biodiversity	biodiversity
quite complex/ major processes considered	same topics (ex. P) as for detailed variant, but simplified	merging of impacts strong simplification

Increasing feasibility (implementation/ controllability)

Increasing flexibility and accuracy

IDPS: GHG emissions for three variants

detailed	medium	simple
GHG= $\frac{e_1 + e_2 + e_3 + e_4 + e_5}{UAA}$	similar to detailed system but parameterization terms e_1 - e_4 simplified, term e_5 omitted.	Climate and Nutrients
e ₁ : methane (CH ₄) emissions from ruminants by enteric fermentation $e_1 = 3.0 * \left(\frac{2*lac+2}{2*1.286*lac}\right) * LU_{dairy\ cow} + 3.0 * LU_{other\ ruminants}$	e ₁ : number of lactation neglected	indicator: combines GHG emissions with ammonia emissions and nutrient leaching:
e ₂ : nitrous oxide (N ₂ O) emissions from agricultural soils	e ₂ : N ₂ O emissions from excretion of livestock neglected	$\mathbf{CM} = 1 - k_1 \cdot \frac{LU}{ha} - k_2 \cdot \frac{N_{fert}}{ha}$
e ₃ : emissions from drained organic soils	e ₃ : no dependency on depth of water table	k_1 =0.33, k_2 =0.0025
e ₄ : carbon stored in trees	e ₄ : identical as in detailed variant	e.g.: 1.5 LU/ha and 200 kg N/ha => => => no payments
e ₅ : CH ₄ and N ₂ O emissions from stored slurry	e ₅ : omitted	

Workshop: Evaluation of IDPS by stakeholders

detailed	medium	simple		
Advantages				
 ✓ (reasonably) complete description of processes ✓ flexibility ✓ great future potential (e.g. through digitalisation) 	suitable compromise between simple and detailed system Disadvantages	 ✓ easy to implement ✓ based on a few key parameters ✓ low admin. burden (data collection) 		
 full implementation challenging demanding acquisition of data/ high admin. burden requires lot know-how 	cumulates negative aspects of simple and detailed variant	 processes poorly modeled lack of flexibility few options for farmers to reduce environ. impact 		

Challenges

- High complexity/ time-consuming data acquisition may limit acceptance and understanding => promote awareness/ support farm managers
- stakeholder involvement, design of test phase
- Politically set environmental targets are not achieved => identify further levers (e.g. emission-reducing technologies and production methods)
- ensure compatibility of the current direct payment system with IDPS => critical verifications of overlaps and contradictory incentives

Conclusions

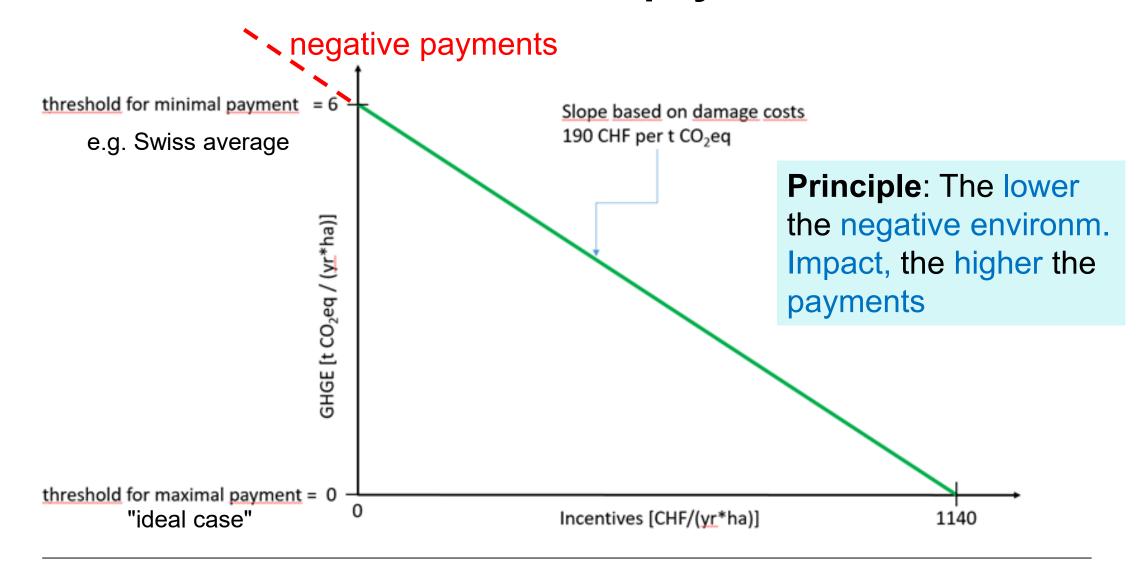
IDPS ...

- ✓ demonstrates that existing indicator systems cannot be used =>
 development of new indicators
- ✓ shows how LCA thinking can be applied for developing indicators
- ✓ is a flexible tool as it provides 3 variants of different complexity

Summary (in engl.) available in Gilgen et al., 2022, *Indikatorbasierte Direktzahlungen im Agrarumweltbereich*, Agroscope Science, 136.

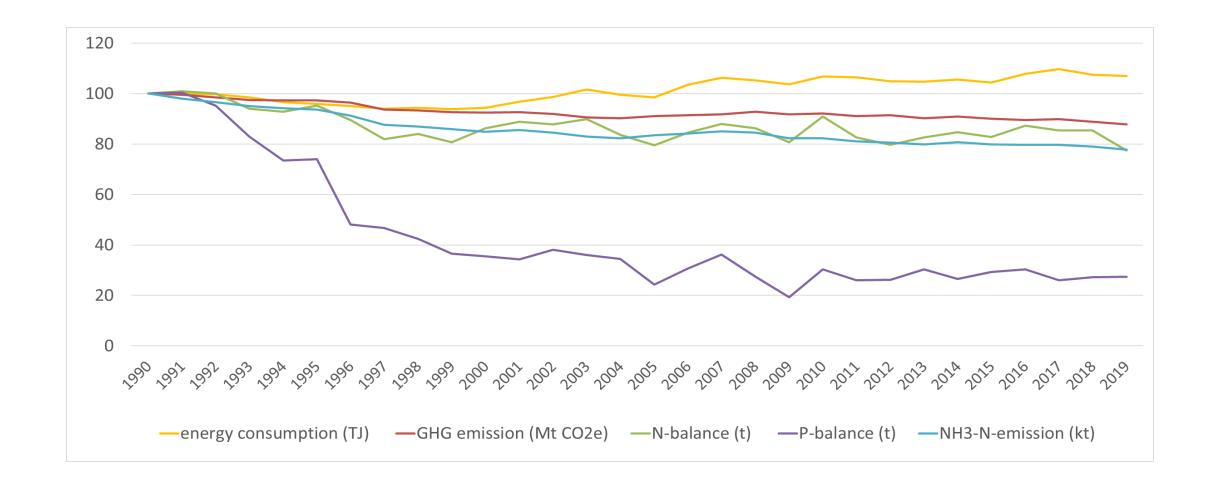
Agroscope good food, healthy environment www.agroscope.admin.ch

O

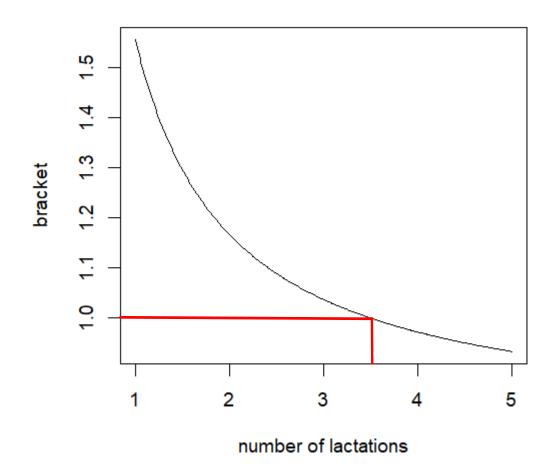

Conclusions

IDPS ...

- ✓ demonstrates that existing indicator systems cannot be used => development of new indicators
- ✓ LCA thinking
- ✓ is a flexible tool as it provides 3 variants of different complexity
- √ examine
- ✓ is a promising approach for enhancing current direct payment system with ecologically driven incentives
- ✓ needs a close involvement of all stakeholders for further developments and possible future operationalization and implementation
- ✓ IDPS is not sufficient to achieve current Agri-Environmental Objectives



Conversion GHG emission to payment level



Introduction

