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• Global recommendation for ecotoxicity 
characterization of chemicals. 

• Matching mathematical framework for 
calculating effect and exposure factors. 

• New characterization factors derived for 
a set of chemicals from a case study. 

• Advancing current approaches for life 
cycle impact assessment of chemicals.  
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A B S T R A C T   

Chemicals emitted to the environment affect ecosystem health from local to global scale, and reducing chemical 
impacts has become an important element of European and global sustainability efforts. The present work ad-
vances ecotoxicity characterization of chemicals in life cycle impact assessment by proposing recommendations 
resulting from international expert workshops and work conducted under the umbrella of the UNEP-SETAC Life 
Cycle Initiative in the GLAM project (Global guidance on environmental life cycle impact assessment indicators). 
We include specific recommendations for broadening the assessment scope through proposing to introduce 
additional environmental compartments beyond freshwater and related ecotoxicity indicators, as well as for 
adapting the ecotoxicity effect modelling approach to better reflect environmentally relevant exposure levels and 
including to a larger extent chronic test data. As result, we (1) propose a consistent mathematical framework for 
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calculating freshwater ecotoxicity characterization factors and their underlying fate, exposure and effect pa-
rameters; (2) implement the framework into the USEtox scientific consensus model; (3) calculate characteriza-
tion factors for chemicals reported in an inventory of a life cycle assessment case study on rice production and 
consumption; and (4) investigate the influence of effect data selection criteria on resulting indicator scores. Our 
results highlight the need for careful interpretation of life cycle assessment impact scores in light of robustness of 
underlying species sensitivity distributions. Next steps are to apply the recommended characterization frame-
work in additional case studies, and to adapt it to soil, sediment and the marine environment. Our framework is 
applicable for evaluating chemicals in life cycle assessment, chemical and environmental footprinting, chemical 
substitution, risk screening, chemical prioritization, and comparison with environmental sustainability targets.   

1. Introduction 

Ecotoxicological stress from chemical emissions is one of the drivers 
of biodiversity loss on local and regional scales and a recognized threat 
on a planetary scale (Alpizar et al., 2019; Kosnik et al., 2022; Lemm 
et al., 2021; Persson et al., 2022; Posthuma et al., 2020). Several tens of 
thousands of chemicals can contribute to ecosystem damage, but only a 
limited fraction of all potentially harmful chemicals has been charac-
terized for use in life cycle assessment (LCA) or environmental foot-
printing (EF) (Rosenbaum et al., 2018). The ecotoxicological 
characterization of all relevant chemicals requires approaches which are 
consistent, transparent and reflect the level of maturity of the science 
today. Such an approach, developed as a result of an international expert 
workshop and consultations, is presented in the following manuscript. 

Characterizing the ecotoxicological profile of a chemical requires 
modelling of environmental fate and exposure, as well as the resulting 
ecotoxicological effects (Jolliet et al., 2006). The ecotoxicological effect 
factor (EF) in life cycle impact assessment (LCIA) represents the chronic 
ecotoxicity of an emitted substance in an exposed ecosystem (Fantke 
et al., 2017), such that an array of chemicals can be represented by an 
array of EFs, with increasing values indicating increased ecotoxicity. In 
current LCIA practice, this effect factor is derived as the 50th percentile 
of a species sensitivity distribution (SSD), constructed using measured or 
extrapolated chronic EC50 values (i.e., the concentration that causes a 
50%-reduction of a vital trait, such as growth or reproduction, after 
chronic exposure) (Henderson et al., 2011; Huijbregts et al., 2002; 
Larsen and Hauschild, 2007; Pennington et al., 2004). It has been shown 
that this so-called HC50EC50 (i.e., hazardous concentration affecting 
50% of the exposed species at their chronic EC50 level) is statistically 
robust, thereby facilitating the comparison between substances (Hen-
derson et al., 2011; Pennington et al., 2004). However, because EC50 
effect data are usually well above environmentally relevant concentra-
tions, it has been argued that comparison between chemicals is biased 
when based on HC50EC50 estimates (Rorije et al., 2022). Further, as the 
majority of EC50 data is derived from acute tests and HC50EC50 values 
are thus based on a mostly extrapolated data, it would be more appro-
priate to use actual chronic test data (e.g. chronic no-observed effect 
concentrations, NOECs) when calculating effect factors, in order to 
better reflect long-term ecotoxicological effects of a chemical (Saouter 
et al. 2017a, 2019). Using chronic NOEC directly to derive SSD and 
model ecotoxicological effects of chemicals is not straightforward, since 
no-effect oriented metrics are not suitable to indicate and compare ef-
fects and related species loss (Fantke et al., 2018a, 2018b). However, 
NOEC can be used as input to derive effect-oriented metrics, since 
variability in ecotoxicological effects across chemicals (which spans 
over several orders of magnitude) is significantly larger than the related 
uncertainty in the estimation of the effect-oriented metrics (Aurisano 
et al., 2019; Hiki and Iwasaki, 2020; Iwasaki et al., 2015). 

Ecotoxicological effect factors are derived for each chemical using 
the sensitivity data from a set of tested species and a selected SSD model, 
with >1 million test data points available globally (Olker et al., 2022). 
Dependent on scientific and practical goals, the available databases can 
be tapped with various, goal-dependent data extraction and curation 
criteria (Fantke et al., 2020a; Müller et al., 2017; Spilsbury et al., 2020). 

For example, the global preference for environmental chemical safety 
assessments is to use chronic NOEC data for a minimum number of 
species and trophic groups, which differs across jurisdictions. Over time, 
the global available test data grows, and furthermore that automated 
protocols can be employed for updates (see e.g., Scharmüller et al., 
2020). Some data portals present data from a variety of data owners, 
such that new data can be added and other data removed (see e.g. https: 
//echa.europa.eu/legal-notice). Such undocumented changes in the 
content of primary data sources hamper transparency and reproduc-
ibility of ecotoxicity characterization factors. Recently, these matters 
have been subject of a consensus-building process on updating ecotox-
icity characterization, held under the umbrella of the UNEP-SETAC Life 
Cycle Initiative in the GLAM project (Frischknecht et al., 2016; Jolliet 
et al., 2017, 2014). 

2. Consensus-building process 

The GLAM project aims to provide contemporary global guidance on 
LCIA indicators for several life cycle impact categories (Frischknecht 
and Jolliet, 2019, 2016). For ecotoxicity, consensual recommendations 
for refining and expanding the current LCIA characterization frame-
work, and for implementing these recommendations into USEtox, were 
developed within two main activities: (1) the Ecotoxicity Task Force; 
and (2) the SETAC Pellston workshop held in 2018 in Valencia, Spain. 
The Ecotoxicity Task Force identified key scientific questions to improve 
ecotoxicity characterization, reviewed existing models and data, drafted 
preliminary recommendations, and proposed further action for harmo-
nization. Details of these activities are presented in Fantke et al. (2018a, 
2018b). The preliminary recommendations were presented and dis-
cussed further by a wider range of experts at a dedicated SETAC Pellston 
workshop, resulting in a set of recommendations (Frischknecht and 
Jolliet, 2019). The recommendations go beyond modelling ecotoxicity 
effect factors and additionally address aspects related to: (1) The general 
assessment framework; (2) Additional non-aquatic compartments, 
exposed representative organisms, and impact pathways; (3) Metrics for 
ecotoxicity characterization; (4) Ecotoxicity modelling of metals; and 
(5) Result interpretation. All 19 recommendations are presented in 
Table 1. Recommendations for environmental fate are the same for 
characterization modelling of ecotoxicity and human toxicity and are 
presented elsewhere (Fantke et al., 2021). Yet, we summarize the main 
features of the fate modelling-related recommendations in the present 
paper as they influence the interpretation of characterization factors and 
resulting impact scores. 

The present paper focuses on the specific recommendations that 
concern changes in the mathematical framework for calculating char-
acterization factors. The first recommendation (no. 8 in Table 1) is to 
“base effect modelling on a concentration domain of the SSD curve that 
is close to the domain of environmental (ambient) concentrations”, 
which deviates from the currently prevailing approach of using the 50th 
percentile across chronic EC50 values that are mostly extrapolated from 
acute data. More specifically, it has been recommended to use SSDs 
based on measured or extrapolated chronic EC10-equivalents (EC10eq), 
derived from chronic or acute NOEC, EC10, or EC50, and to utilize the 
20th percentile (P20) as the working point on the SSD curve. In the 
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Table 1 
Recommendations of the Ecotoxicity Task Force and the Pellston workshop that was held in 2018 in Valencia, Spain. Modified from Table 7.2 in Owsianiak et al. 
(2019).  

Recommendation Implementation status Recommendation 
level a 

General assessment framework  
1 “Build upon the current framework in LCIA for assessing ecosystem damages 

from emissions of toxic chemicals” (Fantke et al., 2018a, 2018b) 
Implemented (USEtox v.2.1) (Fantke et al., 2017) Strongly 

recommended  
2 “Sum up impact scores across chemicals as a first approximation for 

handling mixture toxicity under the typical situation of unknown chemical 
emission location and time along product life cycles” (Fantke et al., 2018a, 
2018b) 

Implemented (USEtox v.2.1) (Fantke et al., 2017) Strongly 
recommended 

Additional compartments, exposed organisms, and impact pathways  
3 “Include ecotoxicological effects of chemical substances on organisms living 

in freshwater sediment, soil, and coastal seawaters in LCIA” (Owsianiak 
et al., 2019) 

Partly implemented, as effect factors are not yet available for all relevant 
compartments (Fantke et al., 2017). 

Recommended  

4 “Consider specific characteristics of chemicals, organisms, and 
compartments in the calculation of effect factors”. This is particularly 
relevant if effect concentrations are derived from effect data representing 
organisms living in other compartments, such as deriving soil terrestrial 
effect factors based on freshwater organism test data (Owsianiak et al., 
2019). 

Not implemented; part of ongoing activities within Ecosystem Quality Task 
Force 

Strongly 
recommended  

5 “Develop methods to address pollinator exposure and related impacts in 
LCIA due to the importance of this impact pathway” (Fantke et al., 2018a, 
2018b) 

Not implemented; part of ongoing activities in dedicated collaboration with 
industry, based on initial pollinator framework for LCA (Crenna et al., 
2020) 

Strongly 
recommended  

6 “Disregard bioaccumulation as removal mechanisms in all compartments 
when calculating exposure factors” (Owsianiak et al., 2019) 

Implemented (this work) Strongly 
recommended 

Metrics for ecotoxicity characterization in LCIA  
7 “Use data that has a traceable origin” (Owsianiak et al., 2019) Not implemented; part of ongoing activities within Ecosystem Quality Task 

Force; considered in this work for 31 chemicals 
Strongly 
recommended  

8 “Base effect modelling on a concentration domain of the SSD curve that is 
close to the domain of environmental (ambient) concentrations. Use the 
20th percentile as the working point on the SSD curve. Derive the SSD curve 
using chronic EC10-equivalents as underlying effect data to estimate the 
potentially affected fraction of species (PAF)” (Owsianiak et al., 2019) 

Implemented (this work), and building on initial EC10-based approach 
(López i Losada et al., 2020) 

Recommended  

9 “Base damage on potentially disappeared fraction of species. However, the 
link between fraction affected and fraction lost must be established.” 
(Owsianiak et al., 2019) 

Not implemented; part of ongoing activities within Ecosystem Quality Task 
Force 

Strongly 
recommended 

Ecotoxicity modelling of metals  
10 “Use free ion activity models to calculate effect factors for metals” 

(Owsianiak et al., 2019) 
Partly implemented, as liquid phase speciation is considered for 15 metals 
in freshwater (Fantke et al., 2017) 

Strongly 
recommended  

11 “Consider liquid phase speciation on metals in the calculation of exposure 
factor in freshwater, coastal seawater, soil, and freshwater sediment” 
(Owsianiak et al., 2019) 

Partly implemented, as liquid phase speciation is considered for 15 metals 
in freshwater (Fantke et al., 2017) 

Strongly 
recommended  

12 “Consider solid phase speciation (accessibility) in the calculation of 
exposure factor for metals in soil” (Owsianiak et al., 2019) 

Not implemented; considered in the LC-Impact version of USEtox (Verones 
et al., 2020) 

Strongly 
recommended  

13 “Consider solid phase speciation (accessibility) in the calculation of 
exposure factor for metals in freshwater sediment” (Owsianiak et al., 2019) 

Not implemented; part of ongoing activities within Ecosystem Quality Task 
Force 

Interim 
recommended  

14 “Essentiality is recognized but of low relevance for LCIA ecotoxicity 
characterization, since ecotoxicological effects on some (sensitive) species 
can always be characterized independently of ‘fertilizing’ effects on other 
species at the same concentration range” (Fantke et al., 2018a, 2018b) 

Implemented (Fantke et al., 2017) Strongly 
recommended 

Meaning and interpretation of results  
15 “Where appropriate (i.e. where results span over more than 1 order of 

magnitude), present impact scores on a log10-scale” (Owsianiak et al., 
2019) 

Implementation depends on LCA modelling software and/or LCA 
practitioner 

Strongly 
recommended  

16 “Present impact scores separately for organic and inorganic substances” 
(Owsianiak et al., 2019; Fantke et al., 2018a, 2018b) 

Implementation depends on LCA modelling software and/or LCA 
practitioner 

Strongly 
recommended  

17 “Present impact scores separately for different time horizons” (Owsianiak 
et al., 2019) 

Not implemented; part of ongoing activities to test dynamic version of 
USEtox initially developed for USEtox 2 (Fantke et al., 2015) and 
implemented in LC-Impact (Verones et al., 2020) 

Interim 
recommended  

18 “Stress when interpreting results that impact scores represent time- and 
space-integrated impact potential and (not actual) ecotoxicological impact 
on receiving ecosystems” (Owsianiak et al., 2019) 

Implementation depends on LCA modelling software and/or LCA 
practitioner 

Strongly 
recommended  

19 “Use comparative toxic units for ecotoxicity (CTUe) as unit of impact 
score” (Owsianiak et al., 2019) 

Not implemented; to be included in the next release of USEtox Recommended  

a Strength of recommendations ranges from interim recommended, through recommended, to strongly recommended (Owsianiak et al., 2019). No recommendation 
was classified to be at the lowest level (suggested/advisable). As explained in Frischknecht and Jolliet (2019), the levels of recommendations are based on the maturity 
of methods, assessed using the following criteria: i) environmental relevance and scientific robustness, ii) availability of data and extrapolation approaches within 
domain of applicability, iii) completeness, iv) parsimony, v) documentation and transparency, vi) testing, vii) stakeholder acceptance and comprehensibility, and vii) 
improvement relative to existing approaches. 
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present study, we detail the rationale for these recommendations and 
show how to calculate the resulting metric, the HC20EC10eq using 
analytical methods. These recommendations have already been adopted 
by Sala et al. (2022), based on earlier discussions (Fantke et al., 2018a, 
2018b; Owsianiak et al., 2019), while the full mathematical framework 
underlying these recommendations is provided in the present study. The 
second recommendation (no. 6 in Table 1) is to “disregard bio-
accumulation as a removal mechanism in all compartments when 
calculating exposure factors”. It was proposed to bring more consistency 
between exposure calculations, where bioaccumulation is modelled at 
steady-state, and conditions in ecotoxicological experiments where 
steady-state is not always reached (Saouter et al., 2017b). Implementing 
this recommendation requires a modification for calculating exposure 
factors. 

Here, we provide the governing equations and apply them for 
characterizing chemicals that are listed in the inventories of an illus-
trative LCA case study. Recommendations that are relevant for metals 
(no. 10–14 in Table 1), which address speciation in fate, exposure and 
effect modelling, are not further discussed in the present paper as they 
can be implemented by combining the new calculation procedures 
presented below with methods presented elsewhere (Dong et al., 2016; 
Owsianiak et al., 2013, 2015; Plouffe et al., 2016; Sydow et al., 2020). 
Exclusion of metals in this paper makes recommendations related to no. 
15–17 less relevant to consider here. Recommendations about the in-
clusion of additional compartments relevant for ecosystem exposure and 
effect modelling (no. 3–5 in Table 1) require additional research efforts 
before they can be included in the consensus modelling framework of 
USEtox. These additional efforts include the collection, curation and 
analysis of effect data for terrestrial and marine organisms and a 
mathematical framework that consistently links fate, exposure and ef-
fect results in these compartments. 

3. Proposed methodological assessment framework 

3.1. General characterization framework 

Chemicals emitted into the environment reach various compart-
ments in different ecosystems. Impact scores IS for a given ecosystem 
type (e.g. freshwater ecosystems) represent ecotoxicity-related damages 
on that ecosystem, and are expressed as Potentially Disappeared Frac-
tion (PDF) of species per functional unit [PDF m3 d/functional unit]. 
Such impact scores are derived from the product of chemical inventory 
mass, mc [kginventory/functional unit] and corresponding endpoint eco-
toxicity characterization factors, CFc [PDF m3 d/kginventory], aggregated 
over environmental compartments c: 

IS=
∑

c
(mc ×CFc) (1) 

The calculation of characterization factors builds upon a generic 
framework for the evaluation of environmental fate, ecosystem expo-
sure, and ecotoxicological effects (Jolliet et al., 2006; Rosenbaum et al. 
2007, 2008). Some alignments were necessary to make these steps 
consistent with the recommended approach for characterizing human 
toxicity impacts in LCIA under GLAM (Fantke et al., 2018a, 2018b, 
2021). 

Ecotoxicity characterization factors CFc are derived from cumulative 
chemical mass transfer fractions from emission compartment c to the 
receiving compartment (i.e., the compartment in which the ecotoxico-
logical effects are evaluated), TFcum

c [kgto compartment/kginventory]. Cu-
mulative transfer fractions are multiplied with the first-order residence 
time in the receiving exposure compartment, which is the inverse of the 
direct overall removal rate constant of chemical mass from that 
compartment, kloss [(kgloss from compartment/d)/kgto compartment]. This 
product is finally combined with the ecosystem exposure factor, XF 
[kgbioavailable/kgto compartment], representing the bioavailable mass frac-
tion in the compartment of exposed ecosystems, and with the 

ecotoxicological effect factor, EF [PDF m3/kgbioavailable]. EF is derived 
from the product of a concentration-response slope factor for the 
ecosystem of interest, CRF [PAF m3/kgbioavailable] (details see below), 
and a related severity factor, SF [PDF/PAF], which translates ‘affected’ 
into ‘disappeared’ fractions of exposed species. With that, ecotoxicity 
characterization factors at the level of damaged species, are derived as: 

CFc =TFcum
c ×

1
kloss ×XF × CRF × SF

⏞̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅⏞ EF

(2) 

Ecotoxicity indicator may be chosen at any point in the impact 
pathway between emissions and damage to the functioning of ecosys-
tems (Hauschild and Huijbregts, 2015). Equation (2) represents char-
acterization at the level of damaged species (in LCIA also known as 
endpoint modelling). In this paper, however, we compute character-
ization factors at the level of affected species (in LCIA known as 
midpoint modelling), applying the CRF only without using severity 
factors, since further effort is required to arrive at global recommen-
dations for ecotoxicological effects severity. Note that in current LCIA 
practice (based on HC50EC50 calculations), this CRF is often directly 
referred to as effect factor. Fig. 1 presents the main steps of the proposed 
assessment framework to calculate ecotoxicity characterization factors 
at midpoint. 

3.2. Environmental fate 

The product of TFcum
c and the inverse of kloss represents the envi-

ronmental fate of a compound. Since relevant multimedia transfer 
processes are already considered in TFcum

c , we do not use the diagonal 
elements of the fate factors matrix as in earlier versions of USEtox 
(Henderson et al., 2011). Instead, we use the first-order chemical resi-
dence time (i.e. the inverse of kloss), to avoid double counting of feedback 
into the original emission compartment. Further details of the under-
lying framework to derive chemical mass transfer fractions are provided 
elsewhere (Fantke et al., 2021, 2016). 

The product of TFcum
c and the inverse of kloss has the unit kgto 

compartment/(kginventory/d) and represents the change in steady-state 
substance amount in the final receiving compartment that results from 
a unit change in the emission mass flow rate into the same or any other 
compartment that is reported in the inventory. This emission flow rate is 
used as an interface to LCIA multimedia models for calculating impact 
scores. Note, that because multimedia fate models applied in LCIA use 
constant coefficients, the steady-state concentration is a linear function 
of the emission flow rate. Hence, a change in steady-state substance 
amount in the water column that results from a unit change in the 
emission flow rate is mathematically equivalent to the overall cumula-
tive amount from a pulse emission, accounting for the environmental 
residence time of the substance (Heijungs, 1995). This makes multi-
media fate models appropriate for characterization of emissions re-
ported in life cycle inventories of product systems assessed in LCA. Given 
the integrative nature of the fate component as part of the character-
ization factor, both short-term and long-term impacts are considered, 
since an infinite time horizon is applied for calculating CFc that in-
tegrates over the entire relevant time frame. 

3.3. Ecosystem exposure 

The ecosystem exposure factor, XF [kgbioavailable/kgto compartment], 
represents the bioavailable mass fraction in the compartment of exposed 
ecosystems (Fantke et al., 2017). It considers important processes which 
lower chemical concentration. For organic chemicals in freshwater, 
these processes are sorption to suspended solids and sorption to dis-
solved organic carbon. These processes are respectively controlled by 
the suspended solids/water partition coefficient, Ksusp [L/kg], and the 
dissolved (colloidal) organic carbon/water partition coefficient, KDOC 

[L/kg], which depend on concentrations of suspended matter, Csusp 
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[kg/L], and dissolved (colloidal) organic carbon, CDOC [kg/L]. Consis-
tent with recommendation no. 6 (Table 1), bioaccumulation is not 
considered as an additional removal mechanism. With that, ecosystem 
exposure factors in freshwater are now derived as: 

XF =
1

(
1 + Ksusp × Csusp + KDOC × CDOC

) (3) 

Note that because uptake of a chemical into biota influences the 
residence time of that chemical in all other relevant compartments, 
bioaccumulation is not to be disregarded when assessing environmental 
fate. 

3.4. Concentration-response slope factor based on species sensitivity 
distributions 

The equations below detail the procedure for calculating HC20EC10eq 

values and the resulting concentration-response slope factors. Because 
ecotoxicity data are generally log-normally distributed (Posthuma et al., 
2019), it follows that: 

log HC20EC10eq = SSDμlog EC10eq + z0.2 × SSDσlog EC10eq (4)  

with 

SSDμlog EC10eq =
1
n
×
∑n

i=1
(log EC10eq

i ) (5)  

SSDσlog EC10eq =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
×
∑n

i=1

(
log EC10eq

i − SSDμlog EC10eq

)2
√

(6)  

z0.2 =
̅̅̅
2

√
× erf − 1(2×P0.2 − 1) (7)  

where μ and σ are respectively the arithmetic mean and standard devi-
ation of the normal distribution of the underlying log-transformed 
EC10eq data; z0.2 is the inverse of the standard normal distribution at 
the 0.2 probability level, i.e. − 0.842, and erf is the error function. 

The log EC10eq
i refers to the arithmetic mean across log10-trans-

formed chronic EC10eq
i data points per species i, if more than 1 data 

point per species is available. Alternative approaches might be discussed 
in the future of how to average multiple available data points per species 
(e.g. based on how many chronic data are considered sufficient vs. 
including also acute data, or how to best combine different effects). The 
concentration-response slope factor is derived from taking the slope on 
the SSD at the HC20EC10eq (eq (8)). It represents an incremental change in 
the potentially affected fraction of species due to an incremental expo-
sure to the bioavailable concentration of a chemical at the HC20 level. 

Fig. 1. Recommended approach for deriving ecotoxicity characterization factors at midpoint, as a product of: (a) environmental fate (that is, cumulative chemical 
mass transfer fractions from emission compartment c to the receiving compartment multiplied with the inverse of the direct overall removal rate constant of chemical 
mass from the receiving compartment, which is equal to the time-integrated mass in the receiving compartment for a unit emission to compartment c); (b) ecosystem 
exposure, considering removal mechanisms through sorption to suspended matter and dissolved organic carbon and, for metals, speciation within the dissolved phase 
(not shown); and (c) ecotoxicological effects based on species sensitivity distributions (SSD). Abbreviations: SP = suspended matter, DOC = dissolved organic carbon, 
PAF = potentially affected fraction, SSD = species sensitivity distribution, HC = hazardous concentration, CRF = concentration-response slope factor. 
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CRF =
0.2

10log HC20EC10eq
=

0.2
HC20EC10eq

(8) 

Recommendations presented in Table 1 do not prescribe which 
database to use for extracting effect data or which methods should be 
used to estimate chronic EC10eq from other effect data such as acute 
EC50 values, if empirical EC10 data from chronic tests are missing. Also, 
the minimum number of data points, species and taxonomic groups 
required to construct a robust SSD are not prescribed. In the present 
study, for statistical reasons, chronic EC10eq were derived from SSDs 
using at least 5 different species, from at least 3 distinct trophic levels 
(primary producers, primary consumers, secondary consumers or de-
composers). With a minimum of 5 species, at least 1 data point on the 
SSD falls into the range below the 20th percentile of an SSD, so that the 
final HC20-estimate is not based on an extrapolation beyond the actual 
dataset. In the present work, we applied the approaches presented by 
Aurisano et al. (2019) to estimate chronic EC10eq values from either 
chronic NOEC, chronic LOEC (i.e., lowest observed effect concentra-
tion), or chronic EC50 values. These extrapolation methods were chosen 
because they: (1) were developed using a curated set of effect data; (2) 
were developed using a set of chemicals representing a relatively large 
chemical space (e.g., log-transformed octanol–water partitioning coef-
ficient, log KOW ranging from 0 to 6); and (3) have acceptable goodness 
of fit (R2 ≥ 0.84 for extrapolations across chronic endpoints). Only for 
those chemicals for which the number of species with chronic EC10eq 

derived from chronic effect data was less than 5, species-specific chronic 
EC10eq were extrapolated from all available chronic and acute (i.e., 
acute NOEC, acute EC10 and acute EC50) effect data. 

Raw data on effects from lab-based ecotoxicity studies for deriving 
HC20EC10eq were extracted from the SOLUTIONS database (Posthuma 
et al., 2019). This database was used, because (1) it comprises curated 
data points for >12,000 chemicals compiled from different sources; and 
(2) it includes a subset of data traceable in the peer-reviewed literature, 
next to data entries obtained for research from the data portal from the 
European Chemicals Agency (ECHA) that presents regulatory dossier 
data for chemical safety assessments. To make the choice of data 
consistent with recommendation no. 7 (Table 1), for the present paper, 
the subset of data traceable in the peer-reviewed literature only was 
used. We note that with increasing numbers of observations, the SSDs of 
compounds based on peer reviewed data and those exclusively based on 
ECHA-portal data resembled each other more than with lower data 
numbers (unpublished observation of RIVM). Other ecotoxicity data 
collection and curation efforts (e.g., JRC’s ecotox explorer, Envirotox 
database, US-EPA’s ToxValDB) could be considered as potential alter-
native or complementary data sources for deriving ecotoxicity effect 
factors. 

To illustrate the workflow and make use of the formulated recom-
mendations, a case study on chemicals used in rice production and 
consumption is implemented. Characterization factors derived for the 
rice case study chemicals, however, are only calculated for demonstra-
tion purposes and are not official USEtox characterization factors, which 
are only formally included in official USEtox release versions. Case study 
SSDs were characterized based on the number of available data points 
and coverage of taxonomic groups, and SSD-quality earmarks were 
assigned following the recommendation of Posthuma et al. (2019), 
considering four aspects; (1) SSD fullness; (2) biodiversity coverage; (3) 
data origin quality; and (4) extrapolation quality. The earmarks can 
range from 1111, representing highest possible scores across all four 
criteria, to 2437, representing lowest possible scores across criteria. 
Note, that the lowest possible score 2 for the SSD fullness (1st digit in the 
quality earmark) and the lowest possible score 3 for data origin quality 
(3rd digit in the earmark) were not used in this work as any chemical for 
which an insufficient number of empirical data points was available was 
excluded from the analysis (see above). Further, quality scores for 
extrapolation quality are not directly comparable with those of Post-
huma et al. (2019) because different extrapolation approaches were 

used. Details of the quality earmarks and extrapolations schemes for our 
case study are presented in the SI, Tables S1 and S2. 

4. Case study on rice production and consumption 

The presented approach for advancing ecotoxicity characterization 
via HC20EC10

eq was evaluated in an illustrative case study on rice pro-
duction and consumption across three scenarios, for a functional unit 
(FU) of 1 kg cooked, white rice. This case study was chosen as it allows 
for a comparison of ecotoxicity results with other impact categories, for 
which consensual recommendations have been developed and tested 
earlier in GLAM (Frischknecht et al., 2016; Verones et al., 2017). In the 
first scenario, rice is produced (i.e. agricultural production and pro-
cessing) in rural areas and prepared (i.e. distribution and cooking) in 
urban areas of China (CN). In the second scenario, rice is produced and 
prepared in rural areas of India (IN). In the third scenario, rice is pro-
duced in rural areas of the U.S. and prepared in urban areas of 
Switzerland (US/CH). Details of the case study, including goal and scope 
definition and life cycle inventories of unit processes, are presented in 
the Electronic Supplementary Material of Frischknecht et al. (2016), 
while the inventory of chemical emissions relevant for ecotoxicity im-
pacts is presented in Fantke et al. (2021). 

4.1. Freshwater ecotoxicity characterization factors 

For ecotoxicity characterization, we considered all 115 organic 
chemicals reported in rice case study inventories, for which we could 
determine non-zero emissions along the rice production and preparation 
life cycle for at least one of the three considered scenarios (Fantke et al., 
2021). CAS registry numbers were used to extract effect data (EC10s, 
EC50s, and NOECs) from the SOLUTIONS database. Confidential data 
and data points for genera with unspecified species names were 
excluded. For 7 chemicals, concentration-response slope factors could be 
computed based solely on empirical chronic effect data (i.e. without 
acute-to-chronic extrapolations). Additionally, a set of 24 chemicals was 
covered by combining chronic and acute effect data in order to reach the 
minimum requirement of at least 5 species from at least 3 trophic levels. 
That is, only 31 of 115 chemicals could be characterized using the 
present framework. This small coverage is mainly due to the demand of 
having representatives of at least three distinct trophic levels included in 
an SSD. This reduces number of chemicals which meet the criterion 
because two dominant species groups (i.e., crustaceans and fish) often 
belong to the same trophic level (i.e., secondary consumers). 

For all 31 case study chemicals, concentration-response slope factors 
were calculated using Eq. 8. For these chemicals, we also computed 
ecosystem exposure factors, adapted to disregard bioaccumulation as 
removal mechanism, as well as environmental fate factors from the 
product of TFcum

c and the inverse of kloss, using USEtox version 2.12 
(Fantke et al., 2017). 

Across the 31 characterized chemicals, concentration-response slope 
factors ranged from 2.4 to 4.3 × 107 PAF m3/kgbioavailable. Quality ear-
marks of underlying SSDs across these chemicals ranged from 1123 (1 
chemical) through 1126 (3 chemicals), 1223 (5 chemicals), 1226 (17 
chemicals), 1323 (1 chemical), to 1326 (4 chemicals). These earmarks 
suggest that for most (but not all) chemicals, the underlying SSDs are 
relatively robust in terms of taxa coverage (for 25 out of 31 chemicals, 
the number of taxa evaluated is > 5). However, for most (but not all) 
chemicals, the underlying SSDs are less robust in terms of extrapolation 
quality (for 24 out of 31 chemicals, because extrapolation to chronic 
EC10eq had to be done from acute EC50, see SI, Table S1). The largest 
concentration-response slope factors (CRF) were calculated for the 
pesticides λ-cyhalothrin, cypermethrin, and parathion (4.3 × 107, 1.2 ×
107, and 4.7 × 106 PAF m3/kgbioavailable, respectively). Quality earmarks 
of the respective underlying SSDs are 1226, 1226 and 1223. 

Across chemicals, the numerical values of the new CRFs were on 
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average 6.4 times higher when compared to earlier effect factors based 
on HC50EC50, as implemented in USEtox 2.12 (note, however, that for 
damage assessment the severity factor for the HC20EC10eq will have the 
opposite trend). This numerical increase is mainly because SSD curve is 
constructed using log10-transformed EC10eq data, resulting in a large 
decrease of the hazardous concentration when the species response level 
changes from the 50th to the 20th percentile. Exposure factors ranged 
from 0.121 to 1 kg/kg, but none of all 31 chemicals showed noticeable 
(>1%) increase in the exposure factor when bioaccumulation was dis-
regarded as removal process. The product of TFcum

c and kloss were equal to 
the fate factors of USEtox 2.12, which confirms their mathematical 
equivalence, while being now adapted fully with the characterization 
framework for human toxicity (Fantke et al., 2021). 

Across all chemicals and emission compartments, CRFs of the 
different chemicals spanned over 7 orders of magnitude. That is, the 
relative differences in ecotoxicity profiles of the compounds show larger 
variability and consequently had larger influence on the variability of 
characterization factors than related exposure or fate parameters. 
Indeed, freshwater characterization factors were highest for those sub-
stances with highest CRF values, and were equal to 4.1 × 108, 2.1 × 108, 
and 1.7 × 108 PAF m3 d/kginventory for λ-cyhalothrin, cypermethrin and 
parathion, respectively, highlighting the influence of the higher vari-
ability in CRFs of 8 orders of magnitude across the 31 considered 
chemicals as compared to the variability of around a factor of five across 
related exposure factors and a factor of 23 across related fate factors. 

5. Freshwater ecotoxicity impact scores 

Inventory results spanned over 10 orders of magnitude, with varying 
contributions of emission compartments across chemicals and case study 
scenarios (Fig. 2). Freshwater ecotoxicity impact scores were equal to 
24, 24 and 6.6 PAF m3 d/functional unit (1 kg of cooked white rice) for 
the China, India and U.S/Switzerland scenarios, respectively. Across all 
three scenarios, impact scores were driven mainly by soil-borne emis-
sions of the pesticide parathion which has relatively high characteriza-
tion factor across chemicals (contribution to total impact score equal to 
94% for all three scenarios), followed by phenol which is less toxic than 
parathion and its emissions are significantly smaller (resulting in ~1% 
contribution to the total ecotoxicity impact score for all three scenarios). 
Although emitted masses of some toxic chemicals differed between the 
scenarios by up to ~2 orders of magnitude (e.g., toluene, formaldehyde, 
ethylbenzene, acetaldehyde), these differences did not propagate to 
differences in total impact scores because total impact scores were 
dominated by the contribution of parathion, with its relatively high 
emitted mass and high characterization factor. For China and India, 
parathion emissions were identical (~46 mg/functional unit), which 
explains why there are no significant differences in the impact scores of 
both scenarios. Parathion emissions were ~3.5 times smaller for the U. 
S./Switzerland scenario, and the impact scores for U.S./Switzerland 
were therefore lower (Fig. 2). 

5.1. Sensitivity analysis 

We tested the significance of two methodological choices made on 
substance coverage and resulting impact scores, with emphasis on 
evaluating SSD and HC20EC10eq robustness, whereby robustness for 
HC20EC10eq and impact scores is present if the estimate is insensitive to 
changes in input data sets, and for product comparisons where the rank 
order and position of the impact scores across chemicals used for a 
product scenario provide the same information on relative importance 
of chemicals. Generally, it can be expected that robustness of HC20 
values is low if the number of test data used to generate the SSD is low, 
which can result in a misestimation of the SSD slope. That robustness is 
also low if included data contains high proportion of relatively sensitive 
(or relatively insensitive) species, which may misestimate HC20EC10eq , 

particularly so for those chemicals which target specific groups of or-
ganisms according to their toxic mode of action. In turn, these matters 
influence the robustness of across-chemicals impact scores. 

First, we tested the implications of excluding a significant portion of 
the available effect data because full species names were not provided. 
This was done by assigning genus and/or species names to unspecified 
algae, daphnids and fish based on the statistical distribution of species 
used in ecotoxicological experiments in the SOLUTIONS database for 31 
chemicals from the case study. For example, 90% and 7% of tests on 
daphnids were performed using Daphnia magna and Daphnia pulex, 
respectively, with contributions <1% for 8 other daphnia species, and 
this statistic was used to assign all those possible names to unspecified 
daphnids. Results showed that assigning names to unspecified algae, 
daphnids and fish increased the number of characterized substances 
from 31 to 33 (Table 2). Quality earmarks increased for a total of 4 
substances (from 1226 to 1126), reflecting increasing number of taxa 
evaluated for these 4 substances. These increases in substance and 
biodiversity coverage had very small influence on impact scores, which 
increased by ~1% across the three scenarios. Thus, benefits from 
increasing species coverage by assigning names based on statistical 
occurrence of the most dominant groups of organisms used in ecotoxi-
cological tests were modest in the rice case study. 

Second, we tested the implication of the decision to set the required 
number of species from at least 3 different trophic levels to 5. Here, 
comparisons were made with a stricter requirement where the minimum 
number of species is set equal to 9, with at least 3 species from each of a 
minimum of 3 trophic levels. Again, unknown genera and/or species 
were assigned names based on their relative occurrence in ecotoxico-
logical tests for the case study chemicals. Note, that for some chemicals 
this approach resulted in an increasing number of data points in the SSD, 
because the stricter requirement led to the use of acute effect data which 
are more abundant as compared to chronic test data. Overall, this had a 
substantial effect on substance coverage (which decreased from, 31 to 
16 compounds characterized) and total impact scores, which decreased 
by ~95% across the three scenarios. Four factors can explain this 
decrease: (1) exclusion of substances which have relatively large 
contribution to total impact scores; (2) higher proportion of species with 
relatively low sensitivity when more abundant acute effect data are used 
to construct SSDs, which is mainly related to (3) bias towards relatively 
more data from species of taxonomic groups that are in fact not targeted 
by a chemical’s toxic mode of action; and (4) uncertainty in the 
extrapolation to chronic EC10eq. The first factor was less relevant in this 
case study (although the number of characterized substances dropped by 
half compared to the original criterion), since the contribution of the 
excluded substances to total impact score was only ~5%. The second 
and related third factors were, however, far more important. When 
stricter criteria were used for data selection, none of the chemicals could 
be characterized based solely on chronic effect data (which is reflected 
in reduced extrapolation quality score from 2 to 5). This increased 
species coverage for the top contributing substance, parathion (which is 
reflected in increased biodiversity coverage score from 2 to 1), 
increasing the proportion of relatively less sensitive vertebrate species. 
Fig. 3 shows that this more balanced representation of species groups 
reduced CF of parathion by about one order of magnitude. Extrapola-
tions from EC50s to chronic EC10eq further contributed to the decrease 
in the CF for parathion of about half an order of magnitude, indicating 
that the applied extrapolation factors may be too low for parathion. 
Aurisano et al. (2019) already showed that while their extrapolation 
factors were generally representing a relatively large chemical space, 
there is a substantial variability in factors across chemicals. 

Altoghether, these aspects suggest that there is a tradeoff between 
quality of effect data (which decreases with increasing number of 
extrapolation steps toward chronic EC10eq) and robustness of SSDs 
(which increases when more species and taxa are used to construct the 
SSD curve; however, also introducing potential additional bias). This 
calls for careful interpretation of impact scores in light of robustness of 
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SSD curves and for careful selection of extrapolation approaches for 
higher-order extrapolations (e.g., from acute EC50 to chronic EC10eq). 
Our rice case study highlights the added value of using chronic NOEC to 
estimate EC10eq. If NOEC data were excluded from extrapolation to 
chronic EC10eq, none of the substances reported in the life cycle in-
ventory of rice, including the top contributor parathion, could be 
characterized using the criterion of minimum 5 species from at least 3 
different trophic levels. Including NOEC in the extrapolation to EC10eq 

increases the substance coverage and allows to capture orders of 
magnitude difference in characterization factors and resulting impact 
scores across rice case study chemicals. For data-rich chemicals it is 
likely that NOEC closely relates to EC10eq values (Hiki and Iwasaki, 
2020; Iwasaki et al., 2015), whilst use of NOEC to estimate EC10eq for 
data poor compounds would most likely show non-robustness of haz-
ardous concentration estimates. 

5.2. Applicability 

The proposed framework is directly applicable to all those groups of 
chemical substances, which are at characterized using official USEtox 
release versions, namely neutral and dissociating organic compounds 
that can be characterized based on partitioning and degradation, and 
metal ions for which speciation patterns can be obtained. Although 
characterization of metals was not done in the present case study, the 
proposed approaches can be applied by adopting earlier approaches, 
which consider metals’ speciation in environmental fate, exposure, and 
effects (Dong et al., 2014; Gandhi and Diamond, 2018; Owsianiak et al., 
2015; Plouffe et al., 2016; Sydow et al., 2020). The proposed framework 
and the general underlying USEtox model that was applied are not 
applicable without further adaptation to inorganic anions, reactive 
gases, nanoparticles, and ionic liquids and per- and polyfluoroalkyl 
substances. Table 3 presents aspects to consider when adopting the 
presented framework to these groups of substances. 

6. Conclusions and next steps 

We propose a mathematical framework for deriving ecotoxicity ef-
fect factors together with adaptations of ecosystem exposure factors 
based on recommendations from a global expert taskforce. This ad-
vances earlier ecotoxicity characterization frameworks for life cycle 
impact assessment and is consistent with the approach implemented in 
the scientific consensus model USEtox. We include specific recommen-
dations for broadening the assessment scope through proposing to 
introduce additional environmental compartments next to freshwater 
and related ecotoxicity indicators, as well as for adapting the ecotoxicity 
effect modelling approach to better reflect environmentally relevant 
exposure levels and including to a larger extent chronic test data. These 
adaptations will enable future assessments to (a) expand their scope 
beyond freshwater ecotoxicity by also considering marine and soil 
terrestrial ecotoxicity impacts, (b) follow a systematic data selection and 
curation approach for deriving a consistent set of EC10eq values for each 

(caption on next column) 

Fig. 2. Freshwater ecotoxicity characterization factors at midpoint level (a) 
and indicator scores (b–d) for the rice case study. Characterization factors 
(right-side y-axis in a) are plotted as product of the combination of exposure 
factor, the cumulative chemical mass transfer fraction and the inverse of the 
direct overall removal rate constant (x-axis) and corresponding freshwater 
ecotoxicity-related concentration-response slope factors (left-side y-axis). Indi-
cator scores (right-side y-axis in b-d) are plotted as product of life cycle in-
ventory mass (x-axis) and midpoint characterization factors (left-side y-axis). 
Industrial chemicals are emitted to continental rural air, freshwater, and nat-
ural soil, and pesticides are emitted to agricultural soil. Inventory data, char-
acterization factors and their underlying factors for all case study chemicals, 
and impact scores for all 3 scenarios are provided in the SI, Table S3. Filled 
circles represent values calculated using chronic effect data only. Empty circles 
represent values calculated using chronic and acute data. 
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considered chemical, (c) improve the reliability of ecotoxicity effect 
factors by constructing non-linear distributions from sensitivities across 
ecological species from different trophic levels or taxonomic groups, and 
(d) propose concentration-response slope factors at chemical concen-
tration levels that are more environmentally relevant, and (e) enhance 
consistency in ranking of chemicals according to their ecotoxicity 
impact scores with their ranking using hazard characterization in reg-
ulatory risk assessment (Saouter et al., 2017a). With that, the presented 
methodological improvements for ecotoxicity characterization address 
several limitations of existing frameworks. Using effect factors based on 
EC10eq values we hence deal with ecological impacts at 
environmentally-relevant exposure levels. 

Practical implementation of the proposed framework revealed 
remaining challenges for a wider implementation. The ecotoxicity of 84 
out of 115 emitted organic chemicals could not be characterized, 
although 51 of these chemicals have a characterization factor in USEtox 
2.11, and additional 26 chemicals have a characterization factor that is 
flagged ‘indicative’ (indicating higher uncertainty due to the fact that 
the criterion for an effect factor to be based on effect data representing 
algae, crustacean and fish, was not fulfilled). Since USEtox 2.12, the 
effect data selection criterion was adapted to be applied at the level of 
taxonomic or species groups, rather than true trophic levels. Operating 
at the level of trophic level significantly reduces the number of chem-
icals which can be characterized using the presented approach. To in-
crease substance coverage further, future efforts should focus on (1) 
comparing different criteria for inclusion of effect data and determining 
resulting tradeoffs between number of data points and representatives 
(in terms of representation of relevant species) and robustness (in terms 
of statistical uncertainty) of resulting SSDs; (2) exploring the use of 

predictive tools, such as quantitative structure-activity relationships 
(QSAR) and interspecies correlation estimation (ICE) models, which 
may become useful to increase number of data points for developing SSD 
curves; (3) deriving SSD slope parameters for data-poor chemicals based 
on high-quality effect test data for data-rich chemicals; and (4) devel-
oping higher-level predictive approaches for estimation of SSD param-
eters from physicochemical properties and potentially species and effect 
characteristics. 

To improve the presented framework the next steps are to propose a 
systematic set of extrapolation approaches to derive underlying SSD 
effect data as input for obtaining HC20EC10eq and related effect factors, to 
address remaining research gaps with respect to missing effect data for 
different environments (e.g. soil or sediment-dwelling organisms), to 
translate HC20EC10eq based ecotoxicity impacts into affected or potential 
disappearing genetic diversity (i.e. species loss) and functional diversity, 
to report statistical uncertainty of characterization factors; and to test 
the recommended characterization framework in additional case 
studies. With these advances, our proposed ecotoxicity characterization 
framework is designed for evaluating chemical emissions in LCIA, but is 
also applicable for use in chemical and environmental footprinting 
(Saouter et al. 2017a, 2017b; Jolliet et al., 2020), chemical substitution 
(Fantke et al., 2016, 2020b; Steingrímsdóttir et al., 2018), risk screening 
and chemical prioritization (Posthuma et al., 2019; Wender et al., 2018), 
and comparison with sustainability targets (Fantke and Illner, 2019; 
Posthuma et al., 2014). While freshwater ecotoxicity effect factors and 
related characterization factors can now be calculated for several 
thousands of chemicals based on available, curated effect data, addi-
tional extrapolation approaches and predictive techniques are needed to 
(a) cover the wider range of ~100,000 globally marketed chemicals, and 
(b) derive effect factors for additional environments for which test data 

Table 2 
Total impact scores expressed in PAF m3 d/kginventory calculated for 3 scenarios 
(China, India, and U.S./Switzerland) using 3 different approaches to extract and 
include effect data in calculation of CRF values.  

Rice case study 
scenario 

Total impact score [PAF m3 d/kginventory] 

Minimum 5 
species from at 
least 3 trophic 
levels a) 

Minimum 5 species 
from at least 3 
trophic levels, 
including 
“unknown” fish and 
algae b) 

Minimum 9 species 
from at least 3 
trophic levels 
(minimum 3 species 
from each trophic 
level), including 
“unknown” fish and 
algae b) 

China (total 
impact) 

19.5 19.8 1.78 

chronic effect 
test data 

18 18 0.052 

chronic and 
acute effect 
test data 

1.46 1.83 1.73 

India (total 
impact) 

19.5 19.9 1.81 

chronic effect 
test data 

18 18 0.052 

chronic and 
acute effect 
test data 

1.48 1.86 1.76 

U⋅S./ 
Switzerland 
(total 
impact) 

5.3 5.4 0.52 

chronic effect 
test data 

4.9 4.9 0.014 

chronic and 
acute effect 
test data 

0.42 0.53 0.5  

a “Unknown” species (e.g. “algae”, “daphnia” and “fish”) not used to calculate 
concentration-response slope factors (CRF). 

b (“algae”, “daphnia” and “fish” assigned names based on statistical distri-
bution of species in ecotoxicological tests and used to calculate CRFs. 

Fig. 3. Influence of data selection criteria on species sensitivity distributions 
(SSD) for parathion as top-contributing substance to freshwater ecotoxicity 
impacts in the rice case study. Filled circles represent chronic (log-transformed) 
EC10eq derived from chronic NOEC, and black continuous line represents the 
related SSD, with data selected based on the following criterion: minimum 5 
species from at least 3 different trophic levels (TL). Triangles represent chronic 
(log-transformed) EC10eq derived from acute NOEC and acute EC10, and 
dashed black line represents the related SSD, with data selected based on the 
following criterion: minimum 9 species from at least 3 different trophic levels 
(minimum 3 species from each trophic level), including “unknown” fish and 
algae. Filled triangles represent values calculated using chronic effect data only. 
Triangles filled with gray represent data calculated using chronic and acute 
effect data, while empty triangles represent data calculated using acute effect 
data only. Black crosses represent (log-transformed) HC20EC10eq , showing high 
sensitivity to data selection criteria. 
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are much more limited. 
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Table 3 
Main challenges for characterization of chemical substances classified as inor-
ganic anions and oxoanions, reactive gases, nanoparticles, ionic liquids, and per- 
and polyfluoroalkyl substances.  

Substance group Examples Challenges for 
implementation of the 
proposed framework 

Inorganic anions and 
related salts 

fluoride (F− ), potassium 
fluoride (KF) 

Characterization of inorganic 
anions and related salts must 
consider environmental 
chemistry parameters (like 
pH, hardness or content of 
amorphous phases) and 
related complex reaction 
kinetics and dynamics as they 
influence environmental fate, 
exposure and ecotoxic effects 
(Elphick et al., 2011; 
Goldberg and Kabengi, 2010; 
Kirchhübel and Fantke, 
2019) 

Inorganic oxoanions 
and related salts 

bromate (BrO3
− ), 

potassium bromate 
(KBrO3) 

Oxoanions and related salts 
can have strong oxidizing 
properties, and their 
ecotoxicity characterization 
must therefore consider 
kinetics of reduction to 
simpler forms (e.g. bromate 
reduced to bromide) (He 
et al., 2019; Van Ginkel et al., 
2005; Vanwijk and 
Hutchinson, 1995). 

Reactive gases chlorine (Cl2), hydrogen 
cyanide (HCN) 

Characterization of reactive 
gases should consider the 
complex reaction 
mechanisms and kinetics of 
degradation to resulting 
products (like chloride salts 
and chlorinated organic 
chemicals resulting from 
reaction of chlorine gas with 
inorganic and organic 
substances in the respective 
compartments or phases) 
(McNamara et al., 2019; 
Westerhoff et al., 2004). 

Nanoparticles nano titanium dioxide 
(nano-TiO2), nano copper 
(nano-Cu) 

Characterization of 
nanoparticles should 
consider aggregation and 
potential differences in 
bioavailability of free and 
aggregated particles) on 
environmental fate, exposure 
and effects. Characterization 
of some metallic 
nanoparticles should 
furthermore consider 
speciation, as influenced by 
ambient chemistry 
parameters (Meesters et al., 
2014; Qiu and Smolders, 
2017). 

Ionic liquids 1-butyl-3- 
methylimidazolium 
bromide (C8H15BrN2) 
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liquids should consider their 
ionic nature and potential for 
dissociation in the 
environment, which may 
require separate 
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and anions forming the ionic 
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2010; Wilms et al., 2020). 

Per- and 
polyfluoroalkyl 
substances 
(PFASs) 

perfluorobutane sulfonate 
(PFBS) 

Characterization of PFAS 
compounds should consider 
degradation to potentially 
toxic degradation products 
and their unique chemical  

Table 3 (continued ) 

Substance group Examples Challenges for 
implementation of the 
proposed framework 

character (like the 
combination of lipophobic 
and hydrophobic properties, 
to which the conventional 
Kow-based partitioning as 
applied for other organic 
substances does not apply) 
(Holmquist et al., 2020).  
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